Достаточное условие устойчивости вычисления параметров апериодических процессов второго порядка на основе разностных уравнений


Цитировать

Полный текст

Аннотация

Рассматривается проблема устойчивости вычисления параметров затухающих апериодических процессов второго порядка на основе результатов наблюдений. Описывается численный метод определения параметров апериодического процесса второго порядка, в основе которого лежит итерационная процедура вычисления коэффициентов разностного уравнения. Получены неравенства, позволяющие с учётом априорно известных границ изменения параметров исследуемого апериодического процесса обеспечить устойчивость разностного уравнения. Сформулирована и доказана теорема о достаточном условии устойчивости системы нормальных уравнений при решении задачи среднеквадратичного оценивания коэффициентов разностного уравнения. Полученные результаты имеют важное практическое значение и могут быть использованы при выборе периода дискретизации экспериментальной кривой, описывающей наблюдаемый апериодический процесс второго порядка на выходе системы.

Об авторах

Владимир Евгеньевич Зотеев

Самарский государственный технический университет

Email: zoteev-ve@mail.ru
(д.т.н., доц.), профессор, каф. прикладной математики и информатики; Самарский государственный технический университет

Список литературы

  1. Зотеев В. Е., Заусаева М. А. Метод последовательных приближений при среднеквадратичном оценивании параметров переходного процесса / В сб.: Труды Третьей Всероссийской научной конференции (29-31 мая 2006 г.). Часть 2: Моделирование и оптимизация динамических систем и систем с распределенными параметрами / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2006. С. 72-78.
  2. Зотеев В. Е. Параметрическая идентификация диссипативных механических систем на основе разностных уравнений / ред. В. П. Радченко. М.: Машиностроение-1, 2009. 344 с.
  3. Егорова А. А., Зотеев В. Е. О сходимости итерационной процедуры среднеквадратичного оценивания коэффициентов линейно-параметрической дискретной модели колебаний систем с турбулентным трением // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 1(20). С. 171-177.
  4. Воеводин В. В., Кузнецов Ю. А. Матрицы и вычисления. М.: Наука, 1984. 320 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.