Antiplane deformation of a cylindrically anisotropic elastic rod

Cite item


The problem of antiplane deformation of general cylindrical anisotropic material is studied in this paper. Explicit solutions of Dirichlet and Neumann problems are given for a circular domain. The existence of unique weak solution of the Dirichlet problem in a bounded region with a piece-wise smooth boundary is proved.

About the authors

Yurii A Bogan

M. A. Lavrentyev Institute of Hydrodynamics, Siberian Branch of RAS

д.ф.-м.н.), старший научный сотрудник, отд. механики деформируемого твёрдого тела; Институт гидродинамики им. М. А. Лаврентьева СО РАН; M. A. Lavrentyev Institute of Hydrodynamics, Siberian Branch of RAS


  1. Лехницкий С. Г. Кручение анизотропных и неоднородных стержней. М.: Наука, 1971. 240 с.
  2. Ting T. C. The remarkable nature of cylindrically anisotropic elastic materials exemplified by an anti-plane deformation // J. Elasticity, 1998. Vol. 49, no. 3. Pp. 269-284.
  3. Li B., Liu Y. W., Fang Q. H. Interaction of an anti-plane singularity with interfacial anticracks in cylindrically anisotropic composites // Arch. Appl. Mech., 2008. Vol. 78, no. 4. Pp. 295-309.
  4. Прусов И. А. Некоторые задачи термоупругости. Минск: БГУ, 1972. 200 с.
  5. Ландис Е. М. Уравнения второго порядка эллиптического и параболического типов. М.: Наука, 1971. 288 с.
  6. Piccinini L. C, Spagnolo S. On the Hölder continuity of solutions of second order elliptic equations in two variables // Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 1972. Vol. 26, no. 2. Pp. 391-402.

Copyright (c) 2012 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies