Antiplane deformation of a cylindrically anisotropic elastic rod
- Authors: Bogan Y.A1
-
Affiliations:
- M. A. Lavrentyev Institute of Hydrodynamics, Siberian Branch of RAS
- Issue: Vol 16, No 1 (2012)
- Pages: 116-122
- Section: Articles
- URL: https://journals.eco-vector.com/1991-8615/article/view/20917
Cite item
Full Text
Abstract
The problem of antiplane deformation of general cylindrical anisotropic material is studied in this paper. Explicit solutions of Dirichlet and Neumann problems are given for a circular domain. The existence of unique weak solution of the Dirichlet problem in a bounded region with a piece-wise smooth boundary is proved.
Keywords
About the authors
Yurii A Bogan
M. A. Lavrentyev Institute of Hydrodynamics, Siberian Branch of RAS
Email: bogan@hydro.nsc.ru
д.ф.-м.н.), старший научный сотрудник, отд. механики деформируемого твёрдого тела; Институт гидродинамики им. М. А. Лаврентьева СО РАН; M. A. Lavrentyev Institute of Hydrodynamics, Siberian Branch of RAS
References
- Лехницкий С. Г. Кручение анизотропных и неоднородных стержней. М.: Наука, 1971. 240 с.
- Ting T. C. The remarkable nature of cylindrically anisotropic elastic materials exemplified by an anti-plane deformation // J. Elasticity, 1998. Vol. 49, no. 3. Pp. 269-284.
- Li B., Liu Y. W., Fang Q. H. Interaction of an anti-plane singularity with interfacial anticracks in cylindrically anisotropic composites // Arch. Appl. Mech., 2008. Vol. 78, no. 4. Pp. 295-309.
- Прусов И. А. Некоторые задачи термоупругости. Минск: БГУ, 1972. 200 с.
- Ландис Е. М. Уравнения второго порядка эллиптического и параболического типов. М.: Наука, 1971. 288 с.
- Piccinini L. C, Spagnolo S. On the Hölder continuity of solutions of second order elliptic equations in two variables // Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 1972. Vol. 26, no. 2. Pp. 391-402.
