The update exposition of the components organisig the sum of weighted equal powers

Abstract


The sum of the weighted equal powers with natural bases and parameters is organized of components, which are independent or dependent on weight coefficients. Modification of components of the first aspect uses explicitly expressed products of binomial coefficients, and modification of components of the second aspect - products of binomial and weight coefficients. These visible expressions expand possibilities of representation of structure and an order of shaping of the considered sums.

About the authors

Alexander I Nikonov

Samara State Technical University

Email: nikonovai@mail.ru
(д.т.н., проф.), профессор, каф. электронных систем и информационной безопасности; Самарский государственный технический университет; Samara State Technical University

References

  1. Никонов А. И. Преобразование суммы взвешенных степеней натуральных чисел с одинаковыми показателями // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 1(20). С. 258-262.
  2. Никонов А. И. Об одном свойстве взвешенных сумм одинаковых степеней как матричных произведений // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 5(21). С. 313-317.
  3. Nikonov A. I. Matrix representation of the sum of the weighted equal powers with natural base numbers / In: Matematics. Computing. Education: Collect. of scient. abstracts 18th International Conf. Pushchino, 2011. Pp. 123.
  4. Anderson J. A. Discrete Mathematics with Combinatorics, 2nd Edn. Upper Saddle River, NJ: Prentice Hall, 2003. 928 pp.
  5. Виленкин Н. Я. Комбинаторика. М.: Наука, 1969. 328 с.
  6. Turner J. C. Modern applied mathematics: probability, statistics, operational research. London: English Universities Press, 1970. 502 pp.

Statistics

Views

Abstract - 20

PDF (Russian) - 11

Cited-By


Refbacks

  • There are currently no refbacks.

Copyright (c) 2012 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies