The dirichlet problem in the 2d stationary anisotropic thermoelasticity

Cite item


In this article the Dirichlet problem for an anisotropic thermoelastic media is studied. It means, by definition, that a displacement vector and a stationary temperature are assigned at a boundary. This boundary value problem is reduced to a system of integral equations. Kernels of integral operators, entering into this system, are weakly regular in a bounded region with a Lyapunov boundary and Holder continuous boundary data. This boundary value problem keeps up the property of Fredholm solvability if a region and boundary data have weaker properties of smoothness.

About the authors

Yurii A Bogan

M. A. Lavrentyev Institute of Hydrodynamics, Siberian Branch of RAS, 15

(д.ф.-м.н), ведущий научный сотрудник, отдел механики деформируемого твердого тела; Институт гидродинамики им. М.А. Лаврентьева СО РАН; M. A. Lavrentyev Institute of Hydrodynamics, Siberian Branch of RAS, 15


  1. Zhao Yu-Qui On the Plane Orthotropic Stress Problem of Quasi-Static Thermoelasticity // J. Elasticity, 1997. - Vol.46, No. 3. - P. 199-216.
  2. Боган Ю. А. Регулярные интегральные уравнения для второй краевой задачи в анизотропной теории упругости // Изв. РАН. МТТ, 2005. - №4. - С. 17-26.
  3. Прусов И. А. Термоупругие анизотропные пластинки. - Минск: БГУ, 1978. - 200 с.
  4. Мусхелишвили Н. И. Сингулярные интегральные уравнения. - М.: Наука, 1968. - 511 с.
  5. Бикчантаев И. А. Краевая задача для однородного эллиптического уравнения с постоянными коэффициентами// Изв. вузов. Матем., 1975. - №6. - С. 3-13.

Copyright (c) 1970 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies