On nonlocal cosmological equations on half-line

Abstract


A system of nonlocal cosmological equations where the time variable runs over a half-line is considered. These equations are more suitable for description of the Universe than the previously discussed cosmological equations on the whole line since the Friedmann metric contains a singularity at the beginning of time. Definition of the exponential operator includes a new arbitrary function which is absent in the equations on the whole line. It is shown that this function could be choosen in such a way that one of the slow roll parameters in the chaotic inflation scenario can be made arbitrary small. Solutions of the linearized nonlocal equations on the half-line are constructed.

About the authors

Irina Ya Aref'eva

Steklov Mathematical Institute, Russian Academy of Sciences

Email: arefeva@mi.ras.ru
д.ф.-м.н., профессор, ведущий научный сотрудник, отд. теоретической физики; Математический институт им. В. А. Стеклова РАН; Steklov Mathematical Institute, Russian Academy of Sciences

Igor' V Volovich

Steklov Mathematical Institute, Russian Academy of Sciences

Email: volovich@mi.ras.ru
д.ф.-м.н., член-корр. РАН, заведующий отделом, отд. математической физики; Математический институт им. В. А. Стеклова РАН; Steklov Mathematical Institute, Russian Academy of Sciences

References

  1. Aref'eva I. Ya. Nonlocal string tachyon as a model for cosmological dark energy // AIP Conf. Proc., 2006. Vol. 826. Pp. 301-311, arXiv: astro-ph/0410443.
  2. Aref'eva I. Ya., Koshelev A. S., Vernov S. Yu. Crossing of the w = -1 barrier by D3-brane dark energy model // Phys. Rev. D, 2005. Vol. 72, no. 6, 064017, arXiv: astro-ph/0507067.
  3. Calcagni G. Cosmological tachyon from cubic string field theory // JHEP, 2006. Vol. 2006, no. 05, 012. 25 pp., arXiv: hep-th/0512259
  4. Barnaby N., Biswas T., Cline J. M. p-Adic inflation // JHEP, 2007. Vol. 2007, no. 04, 056. 35 pp., arXiv: hep-th/0612230
  5. Aref'eva I. Ya., Joukovskaya L. V., Vernov S. Yu. Bouncing and accelerating solutions in nonlocal stringy models // JHEP, 2007. Vol. 2007, no. 07, 087. 36 pp., arXiv: hep-th/0701184
  6. Calcagni G., Montobbio M., Nardelli G. Route to nonlocal cosmology // Phys. Rev. D, 2007. Vol. 76, no. 12, 126001. 20 pp., arXiv: 0705.3043 [hep-th]
  7. Joukovskaya L. Dynamics in nonlocal cosmological models derived from string field theory // Phys. Rev. D, 2007. Vol. 76, no. 10, 105007. 12 pp., arXiv: 0707.1545 [hep-th]
  8. Aref'eva I. Ya., Joukovskaya L. V., Vernov S. Yu. Dynamics in nonlocal linear models in the Friedmann-Robertson-Walker metric // J. Phys. A: Math. Theor., 2008. Vol. 41, no. 30, 304003, arXiv: 0711.1364 [hep-th].
  9. Barnaby N., Cline J. M. Predictions for nongaussianity from nonlocal inflation // JCAP, 2008. Vol. 2008, no. 06, 030, arXiv: 0802.3218 [hep-th].
  10. Aref'eva I. Ya., Koshelev A. S. Cosmological signature of tachyon condensation // JHEP. Vol. 2008, no. 09, 068. 20 pp., arXiv: 0804.3570 [hep-th]
  11. Mulryne D. J., Nunes N. J. Diffusing nonlocal infation: Solving the feld equations as an initial value problem // Phys. Rev. D, 2008. Vol. 78, no. 06, 063519. 16 pp., arXiv: 0805.0449 [hep-th]
  12. Joukovskaya L. V. Dynamics with infinitely many time derivatives in Friedmann- Robertson-Walker background and rolling tachyon // JHEP, 2009. Vol. 2009, no. 02, 045. 18 pp., arXiv: 0807.2065 [hep-th]
  13. Barnaby N., Kamran N. Dynamics with infinitely many derivatives: Variable coefficient equations // JHEP, 2008. Vol. 2008, no. 12, 022. 27 pp., arXiv: 0809.4513 [hep-th]
  14. Mulryne D. J., Nunes N. J. Non-linear non-local cosmology // AIP Conf. Proc., 2009. Vol. 1115. Pp. 329-334, arXiv: 0810.5471 [astro-ph].
  15. Barnaby N. Nonlocal inflation // Can. J. Phys.. Vol. 87, no. 3. Pp. 189-194, arXiv: 0811.0814 [hep-th].
  16. Calcagni G., Nardelli G. Nonlocal gravity and the diffusion equation // Phys. Rev. D, 2010. Vol. 82, no. 12, 123518. 17 pp., arXiv: 1004.5144 [hep-th].
  17. Koshelev A. S., Vernov S. Yu. Analysis of scalar perturbations in cosmological models with a non-local scalar field // Class. Quantum Grav., 2011. Vol. 28, no. 8, 08501, arXiv: 1009.0746 [hep-th].
  18. Galli F., Koshelev A. S. Perturbative stability of SFT-based cosmological models, arXiv: 1011.5672 [hep-th].
  19. Aref'eva I. Ya. Puzzles with tachyon in SSFT and cosmological applications, arXiv: 1101.5338 [hep-th].
  20. Aref'eva I. Ya., Volovich I. V. Cosmological daemon, arXiv: 1103.0273 [hep-th].
  21. Volovich I. V. p-Adic string // Class. Quant. Grav., 1987. Vol. 4, no. 4, L83.
  22. Brekke L., Freund P. G. O., Olson M., Witten E. Non-archimedean string dynamics // Nucl. Phys. B, 1988. Vol. 302, no. 3. Pp. 365-402.
  23. Frampton P. H., Okada Ya. Effective scalar field theory of p-adic string // Phys. Rev. D, 1988. Vol. 37, no. 10. Pp. 3077-3079.
  24. Владимиров В. С, Волович И. В., Зеленов Е. И. p-Адический анализ и математическая физика. М.: Физматлит, 1994. 352 с.
  25. Dragovich B., Khrennikov A. Yu., Kozyrev S. V., Volovich I. V. On p-adic mathematical physics // p-Adic Numbers, Ultrametric Analysis, and Applications, 2009. Vol. 1, no. 1. Pp. 1- 17, arXiv: 0904.4205 [math-ph].
  26. Владимиров В. С., Волович Я. И. О нелинейном уравнении динамики в теории p-адической струны // ТМФ, 2004. Т. 138, № 3. С. 355-368.
  27. Moeller N., Zwiebach B. Dynamics with infinitely many time derivatives and rolling tachyons // JHEP, 2002. Vol. 2002, no. 10, 034. 39 pp., arXiv: hep-th/0207107
  28. Volovich Ya. I. Numerical study of nonlinear equations with infinite number of derivatives //J. Phys. A: Math. Gen., 2003. Vol. 36, no. 32, 8685, arXiv: math-ph/0301028.
  29. Владимиров В. С. Об уравнении p-адической открытой струны для скалярного поля тахионов // Изв. РАН. Сер. матем., 2005. Т. 69, № 3. С. 55-80, arXiv: math-ph/0507018.
  30. Владимиров В. С. К вопросу об асимптотике при |t| → ∞ решений краевых задач для p-адических струн // ТМФ, 2008. Т. 157, № 3. С. 325-333
  31. Gorka P., Prado H., Reyes E. G. Functional calculus via Laplace transform and equations with infinitely many derivatives // J. Math. Phys., 2010. Vol. 51, no. 10, 103512. 10 pp.
  32. Davis H. T. The theory of linear operators from the standpoint of differential equations of infinite order / Monograph of the Waterman institute of Indiana university (contribution no. 72). Bloomington, Ind.: Principia Press, 1936. 628 pp.
  33. Carleson L. On infinite differential equations with constant coefficients. I // Math. Scand., 1953. Vol. 1. Pp. 31-38.
  34. Hormander L. The analysis of linear partial differential operators. Vol. II: Differential operators with constant coefficients / Reprint of the 1983 Edition. Berlin, Heidelberg: Springer, 2005. 394 pp.
  35. Арабаджян Л. Г., Енгибарян Н. Б. Уравнения в свертках и нелинейные функциональные уравнения / Итоги науки и техн. Сер. Мат. анал., Т. 22. М.: ВИНИТИ, 1984. С. 175- 244
  36. Хачатрян А. Х., Хачатрян Х. А. Об одном нелинейном интегральном уравнении типа уравнения Гаммерштейна c некомпактным оператором // Матем. сб., 2010. Т. 201, № 4. С. 125-136
  37. Hawking S., Ellis J. The large scale structure of space-time / Cambridge Monographs on Mathematical Physics. Vol. I. Cambridge: Cambridge University Press, 1973. 391 pp.
  38. Фок В. А. Собственное время в классической и квантовой механике // Изв. АН СССР, серия физ., 1937. № 4-5. С. 551-568
  39. Feynman R. P. Mathematical formulation of the quantum theory of electromagnetic interaction // Phys. Rev., 1950. Vol. 80, no. 3. Pp. 440-457.
  40. Pais A., Uhlenbeck G. E. On field theories with non-localized action // Phys. Rev., 1950. Vol. 79, no. 1. Pp. 145-165.
  41. Владимиров В. С. Уравнения математической физики. М.: Наука, 1971. 512 с.
  42. Linde A. Inflation and Quantum cosmology. Boston, MA (USA): Academic Press, 1990. 211 pp.

Statistics

Views

Abstract - 5

PDF (Russian) - 2

Cited-By


Refbacks

  • There are currently no refbacks.

Copyright (c) 2011 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies