Mathematical modeling and noise-proof estimation of shock wave pulse parameters based on the results of an experiment in underwater explosions

Cover Page


Cite item

Full Text

Abstract

The article deals with the construction of a mathematical model of the underwater shock wave pulse based on the results of the experiment and numerical and analytical scientific research. The results of the development and comparative analysis of various numerical methods for nonlinear estimation of the parameters of this model are presented. A numerical method is proposed for estimating the pulse energy of a shock wave based on the experimental results in the form of an overpressure waveform both over an infinite period of time and at a given pulse duration. The results of testing the developed numerical methods for mathematical modeling of the underwater shock wave pulse when processing the results of the experiment at the explosion of model charge are presented. The reliability and efficiency of the computational algorithms and numerical methods of nonlinear estimation presented in this paper is confirmed by the results of numerical and analytical studies and mathematical models constructed on the basis of experimental data.

About the authors

Vladimir E. Zoteev

Samara State Technical University

Author for correspondence.
Email: zoteev-ve@mail.ru
ORCID iD: 0000-0001-7114-4894
SPIN-code: 8547-1223
Scopus Author ID: 16456013300
ResearcherId: D-8245-2014
http://www.mathnet.ru/rus/person38585

Dr. Tech. Sci.; Professor; Dept. of Applied Mathematics and Computer Science

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Sergey Yu. Ganigin

Samara State Technical University

Email: ganigin.s.yu@yandex.ru
ORCID iD: 0000-0001-5778-6516
SPIN-code: 5725-6961
Scopus Author ID: 56674530800
http://www.mathnet.ru/rus/person38985

Dr. Phys. & Math. Sci., Professor; Dept. of Solid Chemical Technology

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Dmitry A. Demoretsky

Samara State Technical University

Email: dda74@inbox.ru
ORCID iD: 0000-0002-4523-1465
SPIN-code: 2195-1432
Scopus Author ID: 57190848519
http://www.mathnet.ru/rus/person38903

Dr. Phys. & Math. Sci., Professor; Head of Department; Dept. of Solid Chemical Technology

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Maksim V. Nenashev

Samara State Technical University

Email: nenashev.mv@samgtu.ru
ORCID iD: 0000-0003-3918-5340
Scopus Author ID: 56462953900
http://www.mathnet.ru/rus/person38904

Dr. Tech. Sci., Professor; First Vice-Rector — Vice-Rector for Research

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Aleksey V. Gubinskiy

Samara State Technical University

Email: gubinskiy.av@samgtu.ru
ORCID iD: 0000-0002-9732-2596
SPIN-code: 2052-5236
Scopus Author ID: 57223173606
http://www.mathnet.ru/rus/person169899

Postgraduate Student; Dept. of Solid Chemical Technology

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. A-man Z., Wen-shan Y., Xiong-liang Y. Numerical simulation of underwater contact explosion, Applied Ocean Research, 2012, vol. 34, pp. 10–20. https://doi.org/10.1016/j.apor.2011.07.009.
  2. Zong Z., Zhao Y., Li H. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock, Marine Structures, 2013, vol. 31, pp. 24–43. https://doi.org/10.1016/j.marstruc.2013.01.004.
  3. Zhang N., Zong Z. Hydro-elastic-plastic dynamic response of a ship hull girder subjected to an underwater bubble, Marine Structures, 2012, vol. 29, no. 1, pp. 177–197. https://doi.org/10.1016/j.marstruc.2012.05.008.
  4. Cole R. H. Underwater explosions. Princeton, Princeton Univ. Press, 1948, 437 pp.
  5. Song F., Guo-ning, Jin-hua P. Experimental Study and Numerical Simulation of CL-20Based Aluminized Explosive in Underwater Explosion Hanneng Cailiao, Chinese J. Energetic Materials, 2018, vol. 26, no. 8, pp. 686–695. https://doi.org/10.11943/CJEM2017376.
  6. Kowsarinia E., Alizadeh Y., Salavati pour H. S. Experimental evaluation of blast wave parameters in underwater explosion of hexogen charges, Int. J. Eng., 2012, vol. 25, no. 1(B), pp. 63–70. https://doi.org/10.5829/idosi.ije.2012.25.01b.08.
  7. Lawrence G. W. Shock wave pressure in free water as a function of explosive composition, In: 12th International Detonation Symposium (San Diego, California, August 11–16, 2002), 2002. Retrieved from http://www.intdetsymp.org/detsymp2002/PaperSubmit/FinalManuscript/pdf/Lawrence-221.pdf (March 29, 2021).
  8. Moon S.-J., Kwon J.-I, Park J.-W., Chung J.-H. Assessment on shock pressure acquisition from underwater explosion using uncertainty of measurement, Int. J. Nav. Archit. Ocean Eng., 2017, vol. 9, no. 6, pp. 589–597. https://doi.org/10.1016/j.ijnaoe.2017.04.002.
  9. Kedrinskiy V. K. Hydrodynamics of Explosion. Experiment and Models. Berlin, Springer, 2005, xii+362 pp. https://doi.org/10.1007/3-540-28563-6.
  10. Fan Z., Ma H., Shen Z., Lin M.Application of polyvinylidene fluoride for pressure measurements in an underwater explosion of aluminized explosives, Combust. Explos. Shock Waves, 2015, vol. 51, no. 3, pp. 381–386. https://doi.org/10.1134/S0010508215030156.
  11. Wedberg R. Using underwater explosion and cylinder expansion tests to calibrate afterburn models for aluminized explosives, AIP Conf. Proc., 2018, vol. 1979, 150040. https://doi.org/10.1063/1.5044996.
  12. Huang C., Liu M., Wang B., Zhang Y. Underwater explosion of slender explosives: Directional effects of shock waves and structure responses, Int. J. Impact Eng., 2019, vol. 130, pp. 266–280. https://doi.org/10.1016/j.ijimpeng.2019.04.018.
  13. De Candia S. M., Ojeda R., Reid W., Ratcliffe M., Binns J. The whipping response of a submerged free-free cylinder due to underwater explosions, In: Proc. of the Pacific 2017 International Maritime Conference, Australia, Sydney, October 3–5, 2017, 2017. Retrieved from https://eprints.utas.edu.au/31578/ (March 29, 2021).
  14. Park I.-K., Kim J.-C., An C.-W., Cho D.-S. Measurement of naval ship responses to underwater explosion shock loadings, Shock and Vibration, 2003, vol. 10, pp. 365–377, 803475. https://doi.org/10.1155/2003/803475.
  15. Murata K., Takahashi K., Kato Y. Precise measurements of underwater explosion phenomena by pressure sensor using fluoropolymer, J. Mater. Process. Technol., 1999, vol. 85, no. 1–3, pp. 39–42. https://doi.org/10.1016/S0924-0136(98)00251-9.
  16. Ozeretskovskii O. I. Deistvie vzryva na podvodnye ob"ekty [The Effect of an Explosion on Underwater Objects], ed. E. S. Shakhidzhanova. Moscow, Central Scientific Research Institute of Chemistry and Mechanics, 2007, 262 pp. (In Russian)
  17. Geetha M., Nair U. R., Sarwade D. B., Gore G. M., Asthana S. N., Singh H. Studies on CL-20: The most powerful high energy material, J. Therm. Anal. Calor., 2003, vol. 73, no. 3, pp. 913–922. https://doi.org/10.1023/A:1025859203860.
  18. Panovko Ya. G. Osnovy prikladnoi teorii kolebanii i udara [Fundamentals of Applied Theory of Vibrations and Shock]. Leningrad, Mashinostroenie, 1976, 320 pp. (In Russian)
  19. Granovskii V. A., Siraya T. N. Metody obrabotki eksperimental’nykh dannykh pri izmereniiakh [Methods of processing experimental data in measurements]. Leningrad, Energoatomizdat, 1990, 288 pp. (In Russian)
  20. Draper N. R., Smith H. Applied Regression Analysis, Wiley Series in Probability and Statistics. New York, John Wiley & Sons, 1998, xix+716 pp. https://doi.org/10.1002/9781118625590.
  21. Demidenko E. Z. Lineinaia i nelineinaia regressii [Linear and Nonlinear Regressions]. Moscow, Finance and Statistics, 1981, 302 pp. (In Russian)
  22. Marquardt D. W. An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 1963, vol. 11, no. 2, pp. 431–441. https://doi.org/10.1137/0111030.
  23. Hartley H. O., Booker A. Nonlinear least squares estimation, Ann. Math. Statist., 1965, vol. 36, no. 2, pp. 638–650. https://doi.org/10.1214/aoms/1177700171.
  24. Seber G. A. F., Lee A. J. Linear Regression Analysis, Wiley Series in Probability and Statistics. Hoboken, NJ, Wiley, 2003, xvi+565 pp. https://doi.org/10.1002/9780471722199.
  25. Vuchkov I., Boyadzhieva L., Solakov O. Prikladnoi lineinyi regressionnyi analiz [Applied Linear Regression Analysis]. Moscow, Finance and Statistics, 1987, 238 pp. (In Russian)
  26. Zoteev V. E. Parametricheskaia identifikatsiia dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii [Parametric Identification of Dissipative Mechanical Systems Based on Difference Equations]. Moscow, Mashinostroenie, 2009, 344 pp. (In Russian)
  27. Zoteev V. E., Stukalova E. D., Bashkinova E. V. Numerical method of estimation of parameters of the nonlinear differential operator of the second order, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, vol. 21, no. 3, pp. 556–580 (In Russian). https://doi.org/10.14498/vsgtu1560.
  28. Zoteev V. E. A numerical method of nonlinear estimation based on difference equations, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 4, pp. 669–701 (In Russian). https://doi.org/10.14498/vsgtu1643.
  29. Voevodin V. V., Kuznetsov Yu. A. Matritsy i vychisleniia [Matrixes and Computations]. Moscow, Nauka, 1984, 320 pp. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies