The Riemann method for equations with a dominant partial derivative (A Review)

Cover Page


Cite item

Full Text

Abstract

This review article is devoted to a class of linear equations with a dominant (leading) partial derivative of the form \((D+M)u=f\), where \(Du\) is a mixed partial derivative, and \(M\) is a linear differential operator containing the derivatives of the function \(u\) obtained from \(D\) by discarding at least one differentiation. We can point out the structural similarity of such linear equations with linear ordinary differential equations. We present the Riemann method for linear equations with a dominant partial derivative, which is a natural generalization of the well-known Riemann method for a second-order hyperbolic equation with two independent variables.

The article deals with the main provisions of the theory developed for the equation with the dominant partial derivative of the general form, allowing the interested reader to apply the obtained results to the task that interests him. The definition of the Riemann function as a solution of the Volterra integral equation is given. The main differential identity is discussed, and the process of obtaining a formula for solving the Cauchy problem in terms of the Riemann function by integrating the specified identity over the corresponding domain in \(n\)-dimensional space is demonstrated. An example of constructing a solution to the Cauchy problem for the third-order equation is given.

The Riemann method is described below for a fairly wide class of linear systems of hyperbolic equations (including those with multiple characteristics). This method is ideologically very close to the Riemann method for linear equations with a dominant partial derivative.

Applications of the Riemann method to the study of new problems for partial differential equations are discussed. In particular, using the Riemann method, the correctness of new boundary value problems for factorized hyperbolic equations is proved, the solvability of integral equations with partial integrals is investigated, and a certain modification of the Riemann method allows us to develop the Riemann--Hadamard method for Darboux problems. The explicit representation of solutions of hyperbolic systems in terms of the Riemann matrix allows us to study new boundary value problems, in particular, problems with the assignment of normal derivatives of the desired functions on the characteristics, problems with conditions on the entire boundary of the domain, and Darboux problems.

The Riemann method described here for linear equations with a dominant partial derivative is obviously transferred to matrix equations. In this regard, some cases are indicated when the Riemann matrix is constructed explicitly (in terms of hypergeometric functions) for such matrix equations.

The paper provides a review of the literature, briefly describes the history of the development of this direction in Russia and in foreign countries.

About the authors

Aleksey N. Mironov

Kazan Federal (Volga Region) Federal University, Yelabuga Institute; Samara State Technical University,

Email: miro73@mail.ru
ORCID iD: 0000-0002-8818-286X
SPIN-code: 7323-7945
Scopus Author ID: 35109674600
ResearcherId: O-4769-2016
http://www.mathnet.ru/person29439

Dr. Phys. & Math. Sci.; Professor; Dept. of Mathematics and Applied Computer Science1; Dept. of Higher Mathematics2

89, Kazanskaya str., Yelabuga, 423600, Russian Federation; 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Lubov Mironova

Kazan Federal (Volga Region) Federal University, Yelabuga Institute

Email: lbmironova@yandex.ru
ORCID iD: 0000-0002-3299-2601
SPIN-code: 9216-1763
Scopus Author ID: 56347938200
ResearcherId: O-5527-2016
http://www.mathnet.ru/person41492

Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Mathematics and Applied Computer Science

89, Kazanskaya str., Yelabuga, 423600, Russian Federation

Julia O. Yakovleva

Samara State Technical University

Author for correspondence.
Email: julia.yakovleva@mail.ru
ORCID iD: 0000-0002-9839-3740
SPIN-code: 8742-2675
Scopus Author ID: 57210960309
http://www.mathnet.ru/rus/person55013

Cand. Phys. & Math. Sci.; Associate Professor

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Bianchi L. Sulla estensione del metodo di Riemann alle equazioni lineari alle derivate parziali d’ordine superiore, Rom. Acc. L. Rend. (5), 1895, vol. 4, no. 1, pp. 89–99, 133–142 (In Italian).
  2. Niccoletti O. Sull’estensione del metodo di Riemann alle equazioni lineari a derivateparziali d’ordine superiore // Rom. Acc. L. Rend. (5), 1895. vol. 4, no. 1. pp. 330–337 (In Italian).
  3. Bondarenko B. A. Bazisnye sistemy polinomial’nykh i kvazipolinomial’nykh reshenii uravnenii v chastnykh proizvodnykh [Basic Systems of Polynomial and Quasi-Polynomial Solutions of Partial Differential Equations]. Tashkent, Fan, 1987, 146 pp. (In Russian)
  4. Fage M. K. Operator-analytic functions of one independent variable, Tr. Mosk. Mat. Obs., 1958, vol. 7, pp. 227–268 (In Russian).
  5. Fage M. K., Nagnibida N. I. Problema ekvivalentnosti obyknovennykh lineinykh differentsial’nykh operatorov [The Equivalence Problem of Ordinary Linear Differential Operators]. Novosibirsk, Nauka, 1987, 260 pp. (In Russian)
  6. Nakhushev A. M. Uravneniia matematicheskoi biologii [Equations of Mathematical Biology]. Moscow, Vyssh. Shk., 1995, 301 pp. (In Russian)
  7. Nakhushev A. M. Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with Shifts for Partial Differential Equations]. Moscow, Nauka, 2006, 287 pp. (In Russian)
  8. Zhegalov V. I., Mironov A. N. Differentsial’nye uravneniia so starshimi chastnymi proizvodnymi [Differential Equations with Higher Partial Derivatives]. Kazan, Kazan Math. Society, 2001, 226 pp. (In Russian)
  9. Zhegalov V. I., Mironov A. N., Utkina E. A. Uravneniia s dominiruiushchei chastnoi proizvodnoi [Equations with Leading Partial Derivative]. Kazan, Kazan Univ., 2014, 385 pp. (In Russian)
  10. Dzhokhadze O. M. Laplace invariants for some classes of linear partial differential equations, Differ. Equ., 2004, vol.40, no.1, pp. 63–74. https://doi.org/10.1023/B:DIEQ. 0000028714.62481.2d.
  11. Vekua I. N. New methods for Solving Elliptic Equations, North-Holland Series in Applied Mathematics and Mechanics, vol. 1. New York, John Wiley & Sons, Inc., 1967, xii+358 pp.
  12. Barenblatt G. I., Zheltov Yu. P., Konina I. N. On the basic concepts of filtration theory in fractured media, Prikl. Mat. Mekh., 1960, vol. 24, no. 5, pp. 58–73 (In Russian).
  13. Barenblatt G. I., Zheltov Yu. P. Fundamental equations of filtration of homogeneous liquids in fissured rocks, Sov. Phys., Dokl., 1960, vol. 5, pp. 522–525.
  14. Hallaire M. Le potentiel efficace de l’eau dans le sol en régime de dessèchement, In: L’Eauet la Production Végétale, vol. 9. Paris, INRA, 1964, pp. 27–62.
  15. Soldatov A. P., Shkhanukov M. Kh. Boundary-value-problems with a Samarsky, A. A. general nonlocal condition for higher-order pseudoparabolic equations, Dokl. Math., 1988, vol. 36, no. 3, pp. 507–511.
  16. Serdyukova S. I. Exotic asymptotics for a linear hyperbolic equation, Dokl. Math., 2003, vol. 67, no. 2, pp. 203–207.
  17. Mangeron D. New methods for determining solution of mathematical models governing polyvibrating phenomena. I., Bul. Inst. Politeh. Iaşi, N. Ser., 1968, vol.14(18), no.1–2, pp. 433–436.
  18. Mangeron D., Oğuztöreli M. N. Darboux problem for a polyvibrating equation: Solution as an (F)-equation // Proc. Natl. Acad. Sci. USA, 1970. vol. 67, no. 3. pp. 1488–1492. https://doi.org/10.1073/pnas.67.3.1488.
  19. Kulaev R. C., Shabat A. B. Darboux system and separation of variables in the Goursat problem for a third order equation in R3, Russian Math. (Iz. VUZ), 2020, vol.64, no.4, pp. 35–43. https://doi.org/10.3103/S1066369X20040040.
  20. Bateman H. Logarithmic solutions of Bianchi’s equation, Proc. Natl. Acad. Sci. USA,1933, vol. 19, pp. 852–854.
  21. Corduneanu A. About the equation (u_{xyz}+cu=g) // Bul. Inst. Politeh. Iaşi, Secț. I, 1974. vol. 20(24), no. 1–2. pp. 103–109.
  22. Florian H., Püngel J., Wallner H. Darstellungen von Riemannfunction for (dfrac{partial^{n} w}{partial z_{1}partial z_{2}ldotspartial z_{n}}+ c(z_{1},ldots ,z_{n})w=0) // Ber. Math.-Stat. Sekt. Forschungszent. Graz, 1983. vol.204. 29 pp. (In German)
  23. Lahaye E. La méthode de Riemann appliquee à la résolution d’une categorie d’équations linéaires du troisieme ordre, Acad. Roy. Belgique, Bull. Cl. Sci., V. Ser., 1946, vol.31, pp. 479–494 (In French).
  24. Colton D. Pseudoparabolic equations in one space variable, J. Differ. Equ., 1972, vol. 12, no. 3, pp. 559–565. https://doi.org/10.1016/0022-0396(72)90025-3.
  25. Easwaran S. On the positive definiteness of polyvibrating operators of Mangeron, Acad. roy. Belgique, Bull. Cl. Sci., V. Ser., 1973, vol.59, no.7, pp. 563–569.
  26. Easwaran S. Mangeron’s polyvibrating operators and their eigenvalues// Acad. roy. Belgique, Bull. Cl. Sci., V. Ser., 1973. vol. 59, no. 10. pp. 1011–1015.
  27. Oğuztöreli M. N. Boundary value problems for Mangeron’s equations. I, Bul. Inst. Politeh. Iaşi, Secț. I, 1973, vol. 19(23), no. 3–4, pp. 81–85.
  28. Radochová V. Die Lösing der partiellen Differentialgleihung (u_{xxtt}=A(t,x)u_{xx}+B(t,x)u_{tt}) mit gewissen Nebenbedinungen// Časopis pro pěstování matematiky, 1973. vol.98, no.4. pp. 389–397 (In German). http://eudml.org/doc/21186.
  29. Rundell W., Stecher M. Remarks concerning the support of solutions of pseudoparabolic equation, Proc. Amer. Math. Soc., 1977, vol.63, no.1, pp. 77–81. https://doi.org/10. 2307/2041069.
  30. Rundell W. The construction of solutions to pseudoparabolic equations in noncilindrical domains, J. Differ. Equ., 1978, vol.27, no.3, pp. 394–404. https://doi.org/10.1016/ 0022-0396(78)90059-1.
  31. Rundell W. The Stefan problem for a pseudo-heat equation, Indiana Univ. Math. J., 1978, vol. 27, no. 5, pp. 739–750. https://www.jstor.org/stable/24892297.
  32. Rundell W. The uniqueness class for the Cauchy problem for pseudoparabolic equations, Proc. Amer. Math. Soc., 1979, vol.76, no.2, pp. 253–257. https://doi.org/ 10.2307/2042998.
  33. Vogahova V. A. A boundary value problem with A. M. Nakhushev’s nonlocal condition for a pseudoparabolic equation of moisture transfer, Differ. Uravn., 1982, vol.18, no.2, pp. 280–285 (In Russian).
  34. Vogahova V. A. A boundary value problem for a third-order equation with the nonlocal condition of A. M. Nakhushev, Differ. Uravn., 1983, vol. 19, no. 1, pp. 163–166 (In Russian).
  35. Shkhanukov M. Kh. Some boundary value problems for a third-order equation that arise in the modeling of the filtration of a fluid in porous media, Differ. Uravn., 1982, vol.18, no. 4, pp. 689–699 (In Russian).
  36. Shkhanukov M. Kh. On a method of solving boundary value problems for third order equations, Sov. Math., Dokl., 1982, vol. 26, no. 6, pp. 272–275.
  37. Shkhanukov M. Kh. On some boundary value problems for a third-order equation and extremal properties of its solutions, Sov. Math., Dokl., 1982, vol. 26, no. 3, pp. 675–678.
  38. Dzhokhadze O. M. A Darboux-type problem for a third-order equation with dominating lowest terms, Differ. Equ., 1996, vol. 32, no. 4, pp. 524–537.
  39. Dzhokhadze O. M. Influence of lower terms on the well-posedness of characteristics problems for third-order hyperbolic equations, Math. Notes, 2003, vol.74, no.4, pp. 491–501. https://doi.org/10.1023/A:1026139709809.
  40. Korzyuk V. I. A boundary value problem for a third-order Mangeron equation, Differ. Equ., 1997, vol. 33, no. 12, pp. 1686–1694.
  41. Mamedov I. G. A fundamental solution to the Cauchy problem for a fourth-order pseudoparabolic equation, Comput. Math. Math. Phys., 2009, vol.49, no.1, pp. 93–104. https://doi.org/10.1134/S0965542509010072.
  42. Mamedov I. G. One Goursat problem in a Sobolev space, Russian Math. (Iz. VUZ), 2011, vol. 55, no. 2, pp. 46–55. https://doi.org/10.3103/S1066369X1102006X.
  43. Mamedov I. G. Nonclassical analog of the Goursat problem for a three-dimensional equation with highest derivative, Math. Notes, 2014, vol. 96, no. 2, pp. 239–247. https://doi.org/10.1134/S0001434614070256.
  44. Bandaliyev R. A., Guliyev V. S., Mamedov I. G., Rustamov Y. I. Optimal control problem for Bianchi equation in variable exponent Sobolev spaces, J. Optim. Theory Appl., 2019, vol. 180, no. 1, pp. 303–320. https://doi.org/10.1007/s10957-018-1290-9.
  45. Mamedov I. G., Mardanov M. D., Melikov T. K., Bandaliev R. A. Well-posed solvability of the Neumann problem for a generalized mangeron equation with nonsmooth coefficients, Differ. Equ., 2019, vol.55, no.10, pp. 1362–1372. https://doi.org/10.1134/S0012266119100112.
  46. Fage M. K. The Cauchy problem for Bianchi’s equation, Mat. Sb. (N.S.), 1958, vol. 45(87), no. 3, pp. 281–322 (In Russian).
  47. Zhegalov V. I. A three-dimensional analog of the Goursat problem, In: Neklassicheskie zadachi i uravneniia smeshannogo tipa [Nonclassical Equations and Equations of Mixed Type]. Novosibirsk, 1990, С. 94–98 (In Russian).
  48. Zhegalov V. I., Sevast’yanov V. A. The Goursat problem in four-dimensional space, Differ. Equ., 1996, vol. 32, no. 10, pp. 1427–1428.
  49. Zhegalov V. I., Sevast’yanov V. A. The Goursat problem in (n)-dimensional space, Siberian Math. J., Deposited at VINITI, 08 Jule 1997, no 2290–B97. Novosibirsk, 1997, 4 pp. (In Russian)
  50. Zhegalov V.I. On the three-dimensional Riemann function, Siberian Math. J., 1997, vol. 38, no. 5, pp. 929–934. https://doi.org/10.1007/BF02673035.
  51. Zhegalov V. I., Kotukhov M. P. On integral equations for the Riemann function, Russian Math. (Iz. VUZ), 1998, vol. 42, no. 1, pp. 24–28.
  52. Zhegalov V. I., Utkina E. A. Pseudoparabolic equation of the third order, Russian Math. (Iz. VUZ), 1999, vol. 43, no. 10, pp. 70–73.
  53. Zhegalov V. I., Utkina E. A. The Goursat problem for a three-dimensional equation with a higher derivative, Russian Math. (Iz. VUZ), 2001, vol. 45, no. 11, pp. 74–78.
  54. Zhegalov V. I., Utkina E. A. On a fourth-order partial differential equation with three independent variables, Differ. Equ., 2002, vol.38, no.1, pp. 99–103. https://doi.org/ 10.1023/A:1014811811530.
  55. Sevast’yanov V. A. The Riemann method for a three-dimensional hyperbolic equation of third order, Russian Math. (Iz. VUZ), 1997, vol. 41, no. 5, pp. 66–70.
  56. Sevast’yanov V. A. On a certain case of the Cauchy problem, Differ. Equ., 1998, vol. 34, no. 12, pp. 1716–1717.
  57. Utkina E. A., Differ. Equ., Deposited at VINITI, 28 June 1999, no 2059–B99. Minsk, 1999, 13 pp. (In Russian)
  58. Mironov A. N. On construction of the Riemann function for certain equation in (n)-dimensional space, Russian Math. (Iz. VUZ), 1999, vol. 43, no. 7, pp. 75–77.
  59. Mironov A. N. The construction of the Riemann function for a fourth-order equation, Differ. Equ., 2001, vol.37, no.12, pp. 1787–1791. https://doi.org/10.1023/A: 1014435727536.
  60. Utkina E. A. On a differential equation with a higher-order partial derivative in threedimensional space, Differ. Equ., 2005, vol.41, no.5, pp. 733–738. https://doi.org/10. 1007/s10625-005-0208-0.
  61. Utkina E. A. On the general case of the Goursat problem, Russian Math. (Iz. VUZ), 2005, vol. 49, no. 8, pp. 53–58.
  62. Utkina E. A. Increase of order of normal derivatives in the Goursat boundary value problem, Russian Math. (Iz. VUZ), 2007, vol.51, no.4, pp. 76–81. https://doi.org/ 10.3103/S1066369X07040093.
  63. Mironov A. N. On the Riemann method for equations with leading partial derivative in (mathbb R^n), In: Trudy Matematicheskogo Tsentra Lobachevskogo, vol. 19. Kazan, Kazan Math. Society, 2003, pp. 154–155 (In Russian).
  64. Mironov A. N. The Riemann method for equations with leading partial derivative in (mathbb R^n), Siberian Math. J., 2006, vol.47, no.3, pp. 481–490. https://doi.org/10.1007/ s11202-006-0060-3.
  65. Mironov A. N. On Riemann method for solving a mixed problem, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2007, no. 2(15), pp. 27–32 (In Russian). https://doi.org/10.14498/vsgtu526.
  66. Zhegalov V. I., Mironov A. N. A remark on spatial boundary value problems for hyperbolic equations, Differ. Equ., 2010, vol.46, no.3, pp. 367–374. https://doi.org/ 10.1134/S0012266110030067.
  67. Mironov A. N. Application of the riemann method to a factorized equation in an (n)-dimensional space, Russian Math. (Iz. VUZ), 2012, vol.56, no.1, pp. 48–54. https:// doi.org/10.3103/S1066369X12010070.
  68. Mironova L. B. A problem for a factorized equation with a pseudoparabolic differential operator, Russian Math. (Iz. VUZ), 2020, vol.64, no.8, pp. 37–41. https://doi.org/ 10.3103/S1066369X20080058.
  69. Mironov A. N. Riemann function formulation for two equations with leading partial derivatives, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), pp. 49–59 (In Russian). https://doi.org/ 10.14498/vsgtu444.
  70. Mironov A. N. The Riemann function for one equation in an n-dimensional space, Russian Math. (Iz. VUZ), 2010, vol.54, no.3, pp. 19–23. https://doi.org/10.3103/ S1066369X10030047.
  71. Mironov A. N. On the construction of the Riemann function for an equation with leading fifth partial derivative, Differ. Equ., 2010, vol. 46, no. 2, pp. 270–276. 15330223. https:// doi.org/10.1134/S0012266110020114.
  72. Zhegalov V. I. On solvability of hyperbolic equations in terms of special functions, In: Neklassicheskie uravneniia matematicheskoi fiziki [Nonclassical Equations of Mathematical Physics]. Novosibirsk, 2002, pp. 73–79 (In Russian).
  73. Zhegalov V. I. The solvability of hyperbolic equations in quadratures, Russian Math. (Iz. VUZ), 2004, vol. 48, no. 7, pp. 44–49.
  74. Koshcheeva O. A. Construction of the Riemann function for the Bianchi equation in an (n)-dimensional space, Russian Math. (Iz. VUZ), 2008, vol. 52, no. 9, pp. 35–40. https:// doi.org/10.3103/S1066369X08090053.
  75. Zhegalov V. I. Solution of Volterra partial integral equations with the use of differential equations, Differ. Equ., 2008, vol.44, no.7, pp. 900–908. https://doi.org/ 10.1134/S0012266108070021.
  76. Zhegalov V. I., Sarvarova I. M. One approach to the solution of volterra integral equations with degenerate kernels, Russian Math. (Iz. VUZ), 2011, vol. 55, no. 7, pp. 23–29. https:// doi.org/10.3103/S1066369X11070048.
  77. Mironova L. B. The Riemann method in (mathbb R^n) for a system with multiple characteristics, Russian Math. (Iz. VUZ), 2006, vol. 50, no. 1, pp. 32–37.
  78. Mironova L. B. On characteristic problem for a system with double higher partial derivatives, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2006, no.43, pp. 31–37 (In Russian). https://doi.org/ 10.14498/vsgtu450.
  79. Zhegalov V. I., Mironova L. B. One system of equations with double major partial derivatives, Russian Math. (Iz. VUZ), 2007, vol.51, no.3, pp. 9–18. https://doi.org/ 10.3103/S1066369X07030024.
  80. Sozontova E. A. Characteristic problems with normal derivatives for hyperbolic systems, Russian Math. (Iz. VUZ), 2013, vol.57, no.10, pp. 37–47. https://doi.org/10.3103/ S1066369X13100046.
  81. Mironova L. B. Application of Riemann method to one system in three-dimensional space, Russian Math. (Iz. VUZ), 2019, vol.63, no.6, pp. 42–50. https://doi.org/ 10.3103/S1066369X19060057.
  82. Mironov A. N. Darboux problem for the third-order Bianchi equation, Math. Notes, 2017, vol. 102, no. 1, pp. 53–59. https://doi.org/10.1134/S0001434617070069.
  83. Mironov A. N. Darboux problem for the fourth-order Bianchi equation, Differ. Equ., 2021, vol. 57, no. 3, pp. 328–341. https://doi.org/10.1134/S001226612103006X.
  84. Mironova L. B. Boundary-value problems with data on characteristics for hyperbolic systems of equations, Lobachevskii J. Math., 2020, vol. 41, no. 3, pp. 400–406. https://doi. org/10.1134/S1995080220030130.
  85. Volkodavov V. F., Nikolaev N. Ya., Bystrova O. K., Zakharov V. N. Funktsiia Rimana dlia nekotorykh differentsial’nykh uravnenii v (n)-mernom evklidovom prostranstve i ikh primeneniia [The Riemann Function for Some Differential Equations in (n)-Dimensional Euclidean Space and their Applications]. Samara, Samara Univ., 1995, 76 с. (In Russian)
  86. Volkodavov V. F., Zakharov V. N. Funktsiia Rimana dlia odnogo klassa differentsial’nykh uravnenii v trekhmernom evklidovom prostranstve i ee primeneniia [The Riemann Function for a Class of Differential Equations in Three-Dimensional Euclidean Space and its Applications]. Samara, Samara State Pedagogical Univ., 1996, 51 с. (In Russian)
  87. Andreev A. A. Construction of elementary solutions and solution of Cauchy problem for equations and hyperbolic systems of equations, Ph.D. Thesis (Phys. & Math.) in the specialty 01.01.02 – Differential Equations. Kuibyshev, 1981, 100 pp. (In Russian)
  88. Bitsadze A. V. Some Classes of Partial Differential Equations, Advanced Studies in Contemporary Mathematics, vol.4. New York, Gordon & Breach Science Publ., 1988, xi+504 pp.
  89. Zorich V. A. Matematicheskii analiz [Mathematical Analysis]. Part I. Moscow, Nauka, 1981, 544 pp. (In Russian)
  90. Andreev A. A., Yakovleva Ju. O. The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, no. 3(24), pp. 35–41 (In Russian). https://doi.org/10.14498/vsgtu996.
  91. Erdélyi A., Magnus W., Oberhettinger F. Tricomi F. G. Higher Transcendental Functions, vol. I, Bateman Manuscript Project. New York, McGraw-Hill Book Co., 1953, xxvi+302 pp.
  92. Yakovleva Ju. O., Tarasenko A. V. The solution of Cauchy problem for the hyperbolic differential equations of the fourth order by the Riman method, Vestnik Samarskogo Universiteta. Estestvennonauchnaya Seriya [Vestnik of Samara University. Natural Science Series], 2019, vol.25, no.3, pp. 33–38 (In Russian). https://doi.org/10.18287/2541-7525-2019-25-3-33-38.
  93. Holmgren E. Sur les systèmes linéaires aux dérivées partielles du premier ordre, Arkiv för mat., astr. och fys., 1910, vol. 6, no. 2, pp. 1–10 (In French).
  94. Burmistrov B. N. Solution of the Cauchy problem by the Riemann method for a system of first order equations with a degeneracy on the boundary, Tr. Semin. Kraev. Zadacham, 8. Kazan, Kazan Univ., 1971, pp. 41–54.
  95. Chekmarev T. V. Formulas for solution of the Goursat problem for a linear system of partial differential equations, Differ. Uravn., 1982, vol. 18, no. 9, pp. 1614–1622 (In Russian).
  96. Chekmarev T. V. Sistemy uravnenii smeshannogo tipa [Systems of Mixed-Type Equations]. Nizhny Novgorod, Nizhny Novgorod State Techn. Univ., 1995, 199 pp. (In Russian)
  97. Bitsadze A. V. On structural properties of solutions of hyperbolic systems of partial differential equations of the first order, Matem. Mod., 1994, vol. 6, no. 6, pp. 22–31 (In Russian).
  98. Romanovskii R. K. On Riemann matrices of the first and second kind, Math. USSR-Sb., 1986, vol. 55, no. 2, pp. 485–492. https://doi.org/10.1070/SM1986v055n02ABEH003016.
  99. Romanovskii R. K. Exponentially splittable hyperbolic systems with two independent variables, Math. USSR-Sb., 1988, vol.61, no.2, pp. 335–349. https://doi.org/10.1070/SM1988v061n02ABEH003211.
  100. Vorob’eva E. V., Romanovskii R. K. The method of characteristics for hyperbolic boundary value problems on the plane, Siberian Math. J., 2000, vol. 41, no. 3, pp. 433–441. https://doi.org/10.1007/BF02674100.
  101. Romanovskii R. K., Medvedev Y. A. Optimal two-sided boundary control of heat transmission in a rod. Hyperbolic model., Russian Math. (Iz. VUZ), 2016, vol. 60, no. 6, pp. 45–51. https://doi.org/10.3103/S1066369X16060062.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies