Exact solutions to the Navier–Stokes equations describing stratified fluid flows

Cover Page

Cite item


The paper considers the necessity of constructing exact solutions to the equations of dynamics of a viscous fluid stratified in terms of several physical characteristics, with density and viscosity taken as an example. The application of the families of exact solutions constructed for stratified fluids to modeling various technological processes dealing with moving viscous fluid media is discussed. Based on Lin’s exact solutions, linear in some coordinates, a class of exact solutions to the Navier–Stokes equations is constructed for viscous multilayer media in a mass force field. The class is then extended to the case of the arbitrary relation of kinetic force fields to all three Cartesian coordinates and time. The issues of overdetermination and solvability of the reduced (based on the families under study) Navier–Stokes equation system supplemented by the incompressibility equation are discussed. The case of isobaric shearing flow outside the mass force field is considered in detail as an illustration. Three approaches to obtaining consistency conditions for the overdetermined reduced system of motion equations are discussed, and their interrelation is shown.

About the authors

Natalya V. Burmasheva

Institute of Engineering Science, Urals Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: nat_burm@mail.ru
ORCID iD: 0000-0003-4711-1894
SPIN-code: 7927-5530
Scopus Author ID: 57193346922
ResearcherId: E-3908-2016

Cand. Tech. Sci.; Senior Researcher; Sect. of Nonlinear Vortex Hydrodynamics1; Associate Professor; Dept. of Theoretical Mechanics2

34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federation; 19, Mira st., Ekaterinburg, 620002, Russian Federation

Evgeniy Yu. Prosviryakov

Institute of Engineering Science, Urals Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Author for correspondence.
Email: evgen_pros@mail.ru
ORCID iD: 0000-0002-2349-7801
SPIN-code: 3880-5690
Scopus Author ID: 57189461740
ResearcherId: E-6254-2016

Dr. Phys. & Math. Sci.; Head of Sector; Sect. of Nonlinear Vortex Hydrodynamics1; Professor; Dept. of Theoretical Mechanics2

34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federation; 19, Mira st., Ekaterinburg, 620002, Russian Federation


  1. Ershkov S. V., Prosviryakov E. Y., Burmasheva N. V., Christianto V. Towards understanding the algorithms for solving the Navier–Stokes equations, Fluid Dyn. Res., 2021, vol. 53, no. 4, 044501. https://doi.org/10.1088/1873-7005/ac10f0
  2. Zubarev N. M., Prosviryakov E. Y. Exact solutions for layered three-dimensional nonstationary isobaric flows of a viscous incompressible fluid, J. Appl. Mech. Techn. Phys., 2019, vol. 60, no. 6, pp. 1031–1037. https://doi.org/10.1134/S0021894419060075
  3. Ryzhkov I. I. Thermal Diffusion in Mixtures: Equations, Symmetries, Solutions and Their Stability, Thesis of Dissertation (Cand. Phys. & Math. Sci.). Novosibirsk, Siberian Branch of the Russian Academy of Sciences, 2013, 199 pp. (In Russian)
  4. Burmasheva N. V., Prosviryakov E. Yu. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2019, vol. 23, no. 2, pp. 341–360. https://doi.org/10.14498/vsgtu1670
  5. Burmasheva N. V.,Privalova V. V., Prosviryakov E. Yu. Layered Marangoni convection with the Navier slip condition, Sãdhanã, 2021, vol. 46, no. 1, 55. https://doi.org/10.1007/s12046-021-01585-5
  6. Burmasheva N. V., Prosviryakov E. Yu. On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect, J. King Saud Univ. — Science, 2020, vol. 32, no. 8, pp. 3364–3371. https://doi.org/10.1016/j.jksus.2020.09.023
  7. Burmasheva N. V., Prosviryakov E. Yu. Exact solution for stable convective concentration flows of a Couette type, Computational Continuum Mechanics, 2020, vol. 13, no. 3, pp. 337–349 (In Russian). https://doi.org/10.7242/1999-6691/2020.13.3.27
  8. Burmasheva N. V., Prosviryakov E. Yu. Exact solution of Navier–Stokes equations describing spatially inhomogeneous flows of a rotating fluid, Trudy Inst. Mat. i Mekh. UrO RAN, 2020, vol. 26, no. 2, pp. 79–87 (In Russian). https://doi.org/10.21538/0134-4889-2020-26-2-79-87
  9. Burmasheva N. V., Prosviryakov E. Yu. A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters, The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 32, pp. 33–48 (In Russian). https://doi.org/10.26516/1997-7670.2020.32.33
  10. Burmasheva N. V., Prosviryakov E. Yu. Investigation of a velocity field for the Marangoni shear convection of a vertically swirling viscous incompressible fluid, AIP Conference Proceedings, 2018, vol. 2053, no. 1, 040011. https://doi.org/10.1063/1.5084449
  11. Burmasheva N. V., Prosviryakov E. Yu. Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary, AIP Conference Proceedings, 2017, vol. 1915, no. 1, 040005. https://doi.org/10.1063/1.5017353
  12. Aristov S. N., Prosviryakov E. Y. A new class of exact solutions for three-dimensional thermal diffusion equations, Theor. Found. Chem. Technol., 2016, vol. 50, no. 3, pp. 286–293. https://doi.org/10.1134/S0040579516030027
  13. Davidson J. F., Harrison D. Fluidised Particles. New York, Cambridge Univ. Press, 1963, 155 pp.
  14. Tanford C. Physical Chemistry of Macromolecules. New York, John Wiley and Sons, 1961, xiv+710 pp.
  15. Sherman Ph. Emulsion Science. New York, Academic Press, 1968, x+496 pp.
  16. Barr G. A Monograph of Viscometry. London, Oxford Univ. Press, 1931, xiv+318 pp.
  17. Malkin A. Ya., Chalykh A. E. Diffuziia i viazkost’ polimerov. Metody izmereniia [Diffusion and Viscosity of Polymers. Methods of Measurement]. Moscow, Khimiya, 1979, 304 pp. (In Russian)
  18. Fuks G. I. Viazkost' i plastichnost' nefteproduktov [Viscosity and Plasticity of Petroleum Products]. Moscow, Leningrad, Gostoptekhizdat, 1951, 272 pp. (In Russian)
  19. Sokolov V. N., Domanskii I. V. Gazozhidkostnye reaktory [Gas-Liquid Reactors]. Leningrad, Mashinostroenie, 1976, 216 pp. (In Russian)
  20. Kapitza P. L. Wave flow of thin layers of a viscous liquid, Zh. Eksperim. Teor. Fiz., 1948, vol. 18, no. 1, pp. 3–28 (In Russian); Kapitza P. L. Wave flow of thin layers of a viscous liquid, In: Collected Papers of P.L. Kapitza, vol. 2. Oxford, Pergamon Press, 1965, pp. 662–708. https://doi.org/10.1016/B978-0-08-010973-2.50013-6
  21. Gogonin I. I., Shemagin I. A., Budov V. M., Dorokhov A. R. Teploobmen pri plenochnoy kondensatsii i plenochnom kipenii v elementakh oborudovaniya AES [Heat Transfer during Film Condensation and Film Boiling in Elements of Equipment at Nuclear Power Plants]. Moscow, Energoizdat, 1993, 208 pp. (In Russian)
  22. Hirshburg R. I., Florschuetz L. W. Laminar wavy-film flow: Part II, Condensation and evaporation, J. Heat Transfer, 1982, vol. 104, no. 3, pp. 459–464. https://doi.org/10.1115/1.3245115
  23. Trifonov Yu. Ya. Wavy flow of a liquid film in the presence of a cocurrent turbulent gas flow, J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 5, pp. 762–772. https://doi.org/10.1134/S002189441305009X
  24. Domanskii I. V., Isakov V. P., Ostrovsky G. M., Reshanov A. S., Sokolov V. N. Mashiny i apparaty khimicheskikh proizvodstv: primery i zadachi [Machines and Devices for Chemical Production: Examples and Tasks]. Moscow, Mashinostroenie, 1982, 384 pp. (In Russian)
  25. Romankov P. G., Kurochkina M. I., Morzherin Yu. Ya., Smirnov N. N. Protsessy i apparaty khimicheskoi promyshlennosti [Processes and Devices of Chemical Industry]. Moscow, Khimiya, 1989, 554 pp. (In Russian)
  26. Koskov V. N. Geofizicheskoe issledovanie skvazhin [Geophysical Well Logging]. Perm, Perm State Techn. Univ., 2004, 122 pp. (In Russian)
  27. Vakhromeev G. S., Davydenko A. Yu. Modelirovanie v razvedochnoi geofizike [Modeling in Exploration Geophysics]. Moscow, Nedra, 1987, 192 pp. (In Russian)
  28. Kostitsyn V. I., Khmelevskoi V. K. Geofizika [Geophysics]. Perm, Perm State National Research Univ., 2018, 428 pp. (In Russian)
  29. Barrenblatt G. E., Zheltov I. P., Kochina I. N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., 1960, vol. 24, no. 5, pp. 1286–1303. https://doi.org/10.1016/0021-8928(60)90107-6
  30. Dietrich P., Helmig R., Sauter M., Hötzl H., Köngeter J., Teutsch G. Flow and Transport in Fractured Porous Media. Berlin, Springer-Verlag, 2005, xviii+447 pp. https://doi.org/10.1007/b138453
  31. Pedlosky J. Geophysical Fluid Dynamics. New York, Springer, 1987, xiv+710 pp. https://doi.org/10.1007/978-1-4612-4650-3
  32. Dolzhanskii F. V. Lektsii po geofizicheskoi gidrodinamike [Lectures on Geophysical Fluid Dynamics]. Moscow, Inst. Vychisl. Mat. Ross. Akad. Nauk, 2006, 377 pp. (In Russian)
  33. Bogolyubov N. N., Shirkov D. V. Introduction to the Theory of Quantized Fields, Interscience Monographs in Physics and Astronomy, vol. 3. New York, Interscience Publ., 1959, xvi+720 pp.
  34. Ruban V. P. Motion of magnetic flux lines in magnetohydrodynamics, J. Exp. Theor. Phys., 1999, vol. 89, no. 2, pp. 299–310. https://doi.org/10.1134/1.558984
  35. Kochin N. K., Kibel I. A., Roze N. V. Theoretical Hydromechanics. New York, John Wiley and Sons, 1964, v+577 pp.
  36. Talipova T. G., Pelinovsky E. N., Kurkina O. E., Rouvinskaya E. A., Giniyatullin A. R., Naumov A. A. Nonreflective propagation of internal waves in a channel of variable crosssection and depth, Fundam. Prikl. Gidrofiz., 2013, vol. 6, no. 3, pp. 46–53 (In Russian).
  37. Smith N. R. Ocean modeling in a global ocean observing system, Rev. Geophys., 1993, vol. 31, no. 3, pp. 281–317. https://doi.org/10.1029/93RG00134
  38. Lighthill J. Waves in Fluids, Cambridge Mathematical Library. New York, Cambridge Univ. Press, 1978, xv+504 pp.
  39. Miropolsky Yu. Z. Dynamics of Internal Gravity Waves in the Ocean, Atmospheric and Oceanographic Sciences Library, vol. 24. Dordrecht, Kluwer Acad. Publ., 2001, xviii+406 pp. https://doi.org/10.1007/978-94-017-1325-2
  40. Grimshaw R., Pelinovsky E., Talipova T. Fission of a weakly nonlinear interfacial solitary wave at a step, Geophys. Astrophys. Fluid Dynamics, 2008, vol. 102, no. 2, pp. 179–194. https://doi.org/10.1080/03091920701640115
  41. Chesnokov A. A. Properties and exact solutions of the rotating shallow-water equations for stratified multilayered flows, Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4 (3), pp. 1252–1254 (In Russian).
  42. Pozhalostin A. A., Goncharov D. A. Free axisymmetric oscillations of two-layered liquid with the elastic separator between layers in the presence of surface tension forces, Engineering Journal. Science and Innovation, 2013, no. 12 (24), 1147, 8 pp. (In Russian). https://doi.org/10.18698/2308-6033-2013-12-1147
  43. Pozhalostin A. A., Goncharov D. A., Kokushkin V. V. Small oscillations of two-layer liquid in view permeability of separator, Herald of the Bauman Moscow State Technical University, 2014, no. 5 (56), pp. 109–116 (In Russian).
  44. Shiryaeva S. O., Grigor’ev A. I., Yakovleva L. S. Effect of initial conditions on wave motion in density-stratified three-layer liquid with free surface, Tech. Phys., 2017, vol. 62, no. 3, pp. 374–379. https://doi.org/10.1134/s1063784217030203
  45. Pedlosky J. Ocean Circulation Theory. Berlin, Heidelberg, Springer-Verlag, 1996, xi+455 pp. https://doi.org/10.1007/978-3-662-03204-6.
  46. Shtokman V. B. Ekvatorial’nye protivotecheniia v okeanakh. Osnovy teorii [Theory of the Equatorial Countercurrent. Fundamentals of Theory]. Leningrad, Gidrometeoizdat, 1948, 156 pp. (In Russian)
  47. Sarkisyan A. S. Chislennyi analiz i prognoz morskikh techenii [Numerical Analysis and Sea Current Prediction]. Leningrad, Gidrometeoizdat, 1977, 182 pp. (In Russian)
  48. Zhukov V. T., Feodoritova O. B., Duben A. P., Novikova N. D. Explicit time integration of the Navier–Stokes equations using the local iteration method, KIAM Preprint, 2019, no. 12, 32 pp. (In Russian). https://doi.org/10.20948/prepr-2019-12
  49. Kozelkov A. S., Meleshkina D. P., Kurkin A. A., Tarasova N. V., Lashkin S. V., Kurulin V. V. Fully implicit method for solution of Navier—Stokes equations for simulation of multiphase flows with free surface, Vychisl. Tekhn., 2016, vol. 21, no. 5, pp. 54–76 (In Russian).
  50. Anderson D., Tannehill J. C., Pletcher R. H. Computational Fluid Mechanics and Heat Transfer. Washington, DC, Taylor and Francis, 2016, 774 pp. https://doi.org/10.1201/b12884
  51. Temam R. Navier–Stokes Equations. Theory and Numerical Analysis, vol. 2, Studies in Mathematics and Its Applications. Amsterdam, North-Holland Publ., 1977, vi+500 pp. https://doi.org/10.1016/s0168-2024(09)x7004-9
  52. Taylor T. D., Ndefo E. Computation of viscous flow in a channel by the method of splitting, In: Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, 8. Berlin, Heidelberg, Springer, 1971, pp. 356–364. https://doi.org/10.1007/3-540-05407-3_51
  53. Roache P. J. Computational Fluid Dynamics. Albuquerque, Hermosa, 1972, vii+434 pp.
  54. Soboleva E. B. Onset of Rayleigh–Taylor convection in a porous medium, Fluid Dyn., 2021, vol. 56, no. 2, pp. 200–210. https://doi.org/10.1134/S0015462821020105
  55. Demyshev S. G., Evstigneeva N. A., Alekseev D. V., Dymova O. A., Miklashevskaya N. A. Analysis of the dynamic and energy characteristics of water circulation near the Western Crimea coast and in the Sevastopol region based on the observational data assimilation in the numerical model of the Black sea dynamics, Morskoy Gidrofizicheskiy Zhurnal [Physical Oceanography], 2021, vol. 37, no. 1, pp. 23–40 (In Russian). https://doi.org/10.22449/0233-7584-2021-1-23-40
  56. Tarasevich S. E., Giniyatullin A. A. CFD investigation of flow behavior and heat transfer in tubes with ribbed twisted tape inserts, Tepl. Prots. Tekhn., 2021, vol. 13, no. 2, pp. 78–84 (In Russian). https://doi.org/10.34759/tpt-2021-13-2-78-84
  57. Belokon A. Yu., Fomin V. V. Simulation of tsunami wave propagation in the Kerch strait, Fund. Prikl. Gidrofizika, 2021, vol. 14, no. 1, pp. 67–78 (In Russian). https://doi.org/10.7868/S207366732101007X
  58. Gataulin Ya. A., Smirnov E. M. A flow in the blood vessel with a one-side stenosis: numerical study of the structure and local turbulization, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 2021, vol. 14, no. 1, pp. 72–84. https://doi.org/10.18721/JPM.14105
  59. Prosviryakov E. Yu. New class of exact solutions of Navier–Stokes equations with exponential dependence of velocity on two spatial coordinates, Theor. Found. Chem. Eng., 2019, vol. 53, no. 1, pp. 107–114. https://doi.org/10.1134/S0040579518060088
  60. Stewart R. H. Introduction to Physical Oceanography, 2008, viii+346 pp. https://github.com/introocean/introocean-en

Supplementary files

There are no supplementary files to display.

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies