Models of stochastic dynamics of development of industrial enterprises with lagging internal and external investments

Cover Page


Cite item

Full Text

Abstract

The article proposes new stochastic models of the dynamic development of enterprises that restore their production at the expense of internal and external lagging investments. Systems of stochastic differential balance equations for such enterprises are established, describing random changes in factors of production and output. Proportional, progressive and digressive depreciation deductions are considered and their interaction with lagging internal and external investments is investigated. The conditions for achieving an equilibrium state of the enterprises work are formulated and the corresponding limiting values of the factors of production are calculated. Algorithms of the Euler–Maruyama method are obtained for numerical solutions of systems of stochastic differential equations of enterprise development. For each numerical implementation of these algorithms, the corresponding stochastic trajectories are constructed for the random functions of factors of production and output. A variant of the method for calculating the mathematical expectations of random functions of production factors is proposed, for which the corresponding system of differential equations is obtained. Numerical analysis of solutions of stochastic differential equations for the developed models showed good agreement with the known statistical data on the development of industrial enterprises.

About the authors

Alexander L. Saraev

Samara National Research University

Author for correspondence.
Email: alex.saraev@gmail.com
ORCID iD: 0000-0002-9223-6330
SPIN-code: 1637-1602
Scopus Author ID: 57219452875
http://www.mathnet.ru/person41652

Cand. Econom. Sci., Associate Professor; Associate Professor; Department of Mathematics and Business Informatics

34, Moskovskoye shosse, Samara, 443086, Russian Federation

Leonid A. Saraev

Samara National Research University

Email: saraev_leo@mail.ru
ORCID iD: 0000-0003-3625-5921
SPIN-code: 5418-0800
Scopus Author ID: 6603157677
ResearcherId: B-4696-2019
http://www.mathnet.ru/person39033

Dr. Phys. & Math. Sci., Professor; Head of Department; Department of Mathematics and Business Informatics

34, Moskovskoye shosse, Samara, 443086, Russian Federation

References

  1. Harrod R. F. The Trade Cycle. Oxford, Clarendon Press, 1936, 248 pp.
  2. Domar E. D. Capital expansion, rate of growth, and employment, Econometrica, 1946, vol. 14, no. 2, pp. 137–147. https://doi.org/10.2307/1905364.
  3. Solow R. M. A contribution to the theory of economic growth, Quart. J. Econ., 1956, vol. 70, no. 1, pp. 65–94. https://doi.org/10.2307/1884513.
  4. Swan T. W. Economic growth and capital accumulation, Economic Record, 1956, vol. 32, no. 2, pp. 334–361. https://doi.org/10.1111/j.1475-4932.1956.tb00434.x.
  5. Kuznets S. Long swings in the growth of population and in related economic variables, Proc. Amer. Phil. Soc., 1958, vol. 102, no. 1, pp. 25–52 http://www.jstor.org/stable/985303.
  6. Kuznets S. Quantitative aspects of the economic growth of nations. Paper VIII: Distribution of income by size, Economic Development and Cultural Change, 1963, vol. 11, no. 2, pp. 1–80. https://doi.org/10.1086/450006.
  7. Uzawa H. Optimum technical change in an aggregative model of economic growth, Int. Econ. Review, 1965, vol. 6, no. 1, pp. 18–31. https://doi.org/10.2307/2525621.
  8. Arrow K. J. The economic implications of learning by doing, Review Econ. Stud., 1962, vol. 29, no. 3, pp. 155–173. https://doi.org/10.2307/2295952.
  9. Denison E. F. The contribution of capital to economic growth, American Econ. Review, 1980, vol. 70, no. 2, pp. 220–224 https://www.jstor.org/stable/1815471.
  10. Romer P. M. Increasing returns and long-run growth, J. Polit. Econ., 1986, vol. 94, no. 5, pp. 1002–1037. https://doi.org/10.1086/261420.
  11. Lucas R. E. On the mechanics of economic development, J. Monetary Econ., 1988, vol. 22, no. 1, pp. 3–42. https://doi.org/10.1016/0304-3932(88)90168-7.
  12. Romer P. M. Endogenous technological change, J. Polit. Econ., 1990, vol. 98, no. 5, pp. 71–102 https://www.jstor.org/stable/2937632.
  13. Grossman G. M., Helpman E. Innovation and Growth in the Global Economy. Cambridge, MA, MIT Press, 1991, 359 pp.
  14. Mankiw N. G, Romer D., Weil D. N. A contribution to the empirics of economic growth, Quart. J. Econ., 1992, vol. 107, no. 2, pp. 407–437. https://doi.org/10.2307/2118477.
  15. Grossman G. M., Helpman E. Endogenous innovation in the theory of growth, J. Econ. Perspect., 1994, vol. 8, no. 1, pp. 23–44. https://www.jstor.org/stable/2138149.
  16. Barro R. J., Sala-i-Martin X. I. Economic Growth. Cambridge MA, MIT Press, 1995, 672 pp.
  17. Bruno M., Easterly W. Inflation crises and long-run growth, NBER Working Papers 5209, 1995. https://doi.org/10.3386/w5209.
  18. Gong G., Greiner A., Semmler W. The Uzawa–Lucas model without scale effects: Theory and empirical evidence, Struct. Change Econ. Dyn., 2004, vol. 15, no. 4, pp. 401–420. https://doi.org/10.1016/j.strueco.2003.10.002.
  19. Nizhegorodtsev R. M. Models of logistics dynamics as a tool for economic analysis and forecasting, In: Modelirovanie ekonomicheskoi dinamiki: risk, optimizatsiia, prognozirovanie [Modeling of Economic Dynamics: Risk, Optimization, Forecasting]. Moscow, Dialog MSU, 1997, pp. 34–51 (In Russian).
  20. Badash Kh. Z. Economic and mathematical model of economic growth of an enterprise, Vestn. Udmurtsk. Univ., Ser. Ekonomika Pravo, 2009, no. 1, pp. 5–9 (In Russian).
  21. Korolev A. V., Matveenko V. D. Structure of equilibrium time-varying trajectories in the Lucas endogenous growth model, Autom. Remote Control, 2006, vol. 67, no. 4, pp. 624–633. https://doi.org/10.1134/S0005117906040102.
  22. Kuznetsov Yu. A., Michasova O. V. Comparative analysis of the application of simulation packages and computer mathematics systems for the analysis of models of the theory of economic growth, Ekonom. Analiz, 2007, vol. 86, no. 5, pp. 23–30 (In Russian).
  23. Kuznetsov Yu. A., Michasova O. V. The generalized model of economic growth with human capital accumulation, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2012, no. 4, pp. 46–57 (In Russian).
  24. Prasolov A. V. Matematicheskie metody ekonomicheskoi dinamiki [Mathematical Methods of Economic Dynamics]. St. Petersburg, Lan’, 2015, 352 pp. (In Russian)
  25. Saraev A. L. Equations of nonlinear dynamics of crisis phenomena for multifactor economic systems, Vestnik of Samara State University, 2015, vol. 124, no. 2, pp. 262–272 (In Russian). https://doi.org/10.18287/2542-0461-2015-0-2-262-272.
  26. Saraev A. L., Saraev L. A. Indicators of nonlinear dynamics and the limiting condition of a manufacturing enterprise, Ekonomika i predprinimatel’stvo, 2018, no. 11, pp. 1237–1241 (In Russian).
  27. Saraev A. L. Equations of dynamics of unstable multifactor economic systems taking into account retardation effects of internal investment, Kazan Econom. Vestn., 2015, vol. 17, no. 3, pp. 68–73 (In Russian).
  28. Ilyina E. A., Saraev A. L., Saraev L. A. To the theory of modernization of manufacturing enterprises, taking into account the lag of domestic investment, Ekonomika i predprinimatel’stvo, 2017, no. 9–4(86), pp. 1130–1134 (In Russian).
  29. Saraev A. L., Saraev L. A. Economic and mathematical model of the development of industrial enterprises, taking into account the effect of lagging internal investment, Ekonomika i predprinimatel’stvo, 2019, no. 5(106), pp. 1316–1320 (In Russian).
  30. Saraev A. L., Saraev L. A. Multi-factor mathematical model of development of a production enterprise accounted by internal and external investments, Vestnik of Samara University. Economics and Management, 2020, vol. 11, no. 2, pp. 157–165 (In Russian). https://doi.org/10.18287/2542-0461-2020-11-2-157-165.
  31. Saraev A. L., Saraev L. A. Mathematical models of the development of industrial enterprises, with the effect of lagging internal and external investments, J. Phys.: Conf. Ser., 2021, vol. 1784, 012010. https://doi.org/10.1088/1742-6596/1784/1/012010.
  32. Saraev A. L., Saraev L. A. Stochastic calculation of curves dynamics of enterprise, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 2, pp. 343–364 (In Russian). https://doi.org/10.14498/vsgtu1700.
  33. Artemyev S. S., Yakunin M. A. Matematicheskoe i statisticheskoe modelirovanie v finansakh [Mathematical and Statistical Modeling in Finances]. Novosibirsk, Inst. of Comput. Math. and Math. Geophys., 2008, 174 pp. (In Russian)
  34. Vorontsovskii A. V., Dikarev A. Yu. Forecasting macroeconomic indicators in simulation mode based on stochastic models of economic growth, Finansy i Biznes, 2013, no. 2, pp. 33–51 (In Russian).
  35. Kurzenev V. A., Lychagina E. B. Stochastic Modelling of Dynamics of Economic System, Upravlencheskoe konsultirovanie, 2013, no. 5, pp. 78–83 (In Russian).
  36. Andrianov D. L., Shultz D. N., Oshchepkov I. A. Dynamic stochastic general economic equilibrium models, Upravlenie ekonomicheskimi sistemami [Management of Economic Systems], 2014, vol. 67, no. 7 (In Russian).
  37. Andrianov D. L., Shultz D. N., Oshchepkov I. A. Dynamic stochastic model of Russia’s general economic equilibrium, Vestnik Nizhegorodskogo universiteta, Ser. Sotsialnye nauki, 2015, no. 2(38), pp. 18–25 (In Russian).
  38. Andrianov D. L., Arbuzov V. O., Ivliev S. V., Maksimov V. P., Simonov P. M. Dynamic models of economics: Theory, applications, software implementation, Vestnik Permskogo Universiteta, Ser. Ekonomika, 2015, no. 4, pp. 8–32.
  39. Itô K., McKean H. P. Jr. Diffusion Processes and their Sample Paths, Classics in Mathematics. Berlin, Springer, xv+321 pp. https://doi.org/10.1007/978-3-642-62025-6.
  40. Allen E. Modeling with Itô stochastic differential equations, Mathematical Modelling: Theory and Applications, vol. 22. Netherlands, Springer, 2007, xii+230 pp. https://doi.org/10.1007/978-1-4020-5953-7.
  41. Stepanov S. S. Stokhasticheskii mir [Stochastic World] (In Russian). https://synset.com/pdf/ito.pdf; Accessed April 04, 2021.
  42. Neisy A., Peymany M. Financial modeling by ordinary and stochastic differential equations, World Applied Sciences Journal, 2011, vol. 13, no. 11, pp. 2288–2295.
  43. Kallianpur G., Sundar P. Stochastic analysis and diffusion processes, Oxford Graduate Texts in Mathematics, vol. 24. Oxford, Oxford University Press, 2014, xiv+352 pp. https://doi.org/10.1093/acprof:oso/9780199657063.001.0001.
  44. Bally V., Talay D. The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function, Probab. Th. Rel. Fields, 1996, vol. 104, no. 1, pp. 43–60. https://doi.org/10.1007/BF01303802.
  45. Bally V., Talay D. The law of the Euler scheme for stochastic differential equations: II. Convergence rate of the density, Monte Carlo Methods and Applications, 1996, vol. 2, no. 2, pp. 93–128. https://doi.org/10.1515/mcma.1996.2.2.93.
  46. Debarant K., Rößler A. Classification of stochastic Runge–Kutta methods for the weak approximation of stochastic differential equations, Mathematics and Computers in Simulation, 2008, vol. 77, no. 4, pp. 408–420, arXiv: 1303.4510 [math.NA]. https://doi.org/10.1016/j.matcom.2007.04.016.
  47. Soheili A. R., Namjoo M. Strong approximation of stochastic differential equations with Runge–Kutta methods, World Journal of Modelling and Simulation, 2008, vol. 4, no. 2, pp. 83–93.
  48. Kuznetsov D. S. Stokhasticheskie differentsial’nye uravneniia: teoriia i praktika chislennogo resheniia [Stochastic Differential Equations: Theory and Practice of Numerical Solution]. St. Petersburg, Polytechnic Univ., 2007, 800 pp (In Russian). https://doi.org/10.18720/SPBPU/2/s17-229.
  49. Konakov V., Menozzi S. Weak error for stable driven stochastic differential equations: Expansion of the densities, J. Theor. Probab., 2011, vol. 24, pp. 454–478. https://doi.org/10.1007/s10959-010-0291-x.
  50. Konakov V., Menozzi S. Weak error for the Euler scheme approximation of diffusions with non-smooth coefficients, Electron. J. Probab., 2017, vol. 22, 46, 47 pp., arXiv: 1604.00771 [math.PR]. https://doi.org/10.1214/17-EJP53.
  51. Hottovy S., Volpe G., Wehr J. Noise-Induced drift in stochastic differential equations with arbitrary friction and diffusion in the Smoluchowski–Kramers limit, J. Stat. Phys., 2012, vol. 146, no. 4, pp. 762–773. https://doi.org/10.1007/s10955-012-0418-9.
  52. Frikha N. On the weak approximation of a skew diffusion by an Euler-type scheme, Bernoulli, 2018, vol. 24, no. 3, pp. 1653–1691. https://doi.org/10.3150/16-BEJ909.
  53. Solov’ev V. I. Ekonomiko-matematicheskoe modelirovanie rynka programmnogo obespecheniia [Economic and Mathematical Modeling of the Software Market]. Moscow, Vega-Info, 2009, 176 pp. (In Russian)
  54. Kuznetzova I. Yu. Numerical solution of a stochastic differential equation by the Euler–Maruyama method, Mezhdunarodnyi nauchno-issledovatel’skii zhurnal, 2013, no. 11–1(18), pp. 8–11 (In Russian).
  55. CJSC Samara Bakery and Confectionery Plant: Financial statements and financial analysis (In Russian). https://www.audit-it.ru/buh_otchet/6319008608_zao-samarskiy-bulochno-konditerskiy-kombinat; Accessed April 04, 2021.
  56. LLC Oil Plant Pestravsky: Financial statements and financial analysis (In Russian). https:https://www.audit-it.ru/buh_otchet/6375000296_ooo-maslozavod-pestravskiy; Accessed April 04, 2021.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies