Mathematical modeling and numerical method for estimating the characteristics of non-isothermal creep based on the experimental data

Cover Page

Cite item


The desire to reduce the mass of machines and structures while improving their quality, as well as to make the most complete use of the mechanical properties of materials, requires permanent improvement and development of known methods for calculating and analyzing the stress-strain state of materials under creep conditions.

The article proposes a numerical method for estimating the characteristics of the third stage of non-isothermal creep based on a set of creep diagrams constructed when processing test results for various values of nominal stress and temperature.

The method is based on the nonlinear regression model, the root-mean-square estimates of the parameters of which are found by linearization, including on the basis of difference equations describing the experimental results. The proposed numerical method can also be used to estimate the parameters of the third creep stage, when the experimental results are presented in the form of a set of test diagrams for only one temperature.

The results of testing the developed numerical method for processing the experimental results in the form of creep diagrams for the 09G2C alloy at different temperatures are presented. The reliability and efficiency of the calculation algorithms and methods of nonlinear estimation presented in the work are confirmed by the results of numerical and analytical studies and mathematical models of the third stage of non-isothermal creep constructed on the basis of experimental data.

About the authors

Vladimir E. Zoteev

Samara State Technical University

Author for correspondence.
ORCID iD: 0000-0001-7114-4894
SPIN-code: 8547-1223
Scopus Author ID: 16456013300
ResearcherId: D-8245-2014

Dr. Tech. Sci.; Professor; Dept. of Applied Mathematics and Computer Science

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation


  1. Rabotnov Yu. N. Izbrannye trudy. Problemy mekhaniki deformiruemogo tela [Selected Papers. Problems of the Mechanics of a Deformable Rigid Body]. Moscow, Nauka, 1991, 196 pp. (In Russian)
  2. Rabotnov Yu. N. Creep problems in structural members. Amsterdam, London, North-Holland Publ. Co., 1969, xiv+822 pp.
  3. Malinin N. N. Prikladnaia teoriia plastichnosti i polzuchesti [Applied Theory of Plasticity and Creep]. Moscow, Mashinostroenie, 1975, 400 pp. (In Russian)
  4. Malinin N. N. Raschety na polzuchest' elementov mashinostroitel’nykh konstruktsii [Creep Calculations of Mechanical Engineering Structure Elements]. Moscow, Mashinostroenie, 1981, 220 pp. (In Russian)
  5. Lokoshchenko A. M. Polzuchest' i dlitel’naia prochnost’ metallov [Creep and Long-Term Strength of Metals]. Moscow, Fizmatlit, 2016, 504 pp. (In Russian)
  6. Boytsov Yu. I., Danilov V. L., Lokoshchenko A. M., Shesterikov S. A. Issledovanie polzuchesti metallov pri rastiazhenii [Study of Tensile Creep of Metals]. Moscow, Bauman Moscow State Technical Univ., 1997, 98 pp. (In Russian)
  7. Sosnin O. V., Gorev B. V., Nikitenko A. F. Energeticheskii variant teorii polzuchesti [Energy Variant of Creep Theory]. Novosibirsk, Inst. of Hydrodynamics, USSR Acad. of Sci., 1986, 95 pp. (In Russian)
  8. Sosnin O. V., Lyubashevskaya I. V., Novoselya I. V. Comparative estimation of high-temperature creep and rupture of structural materials, J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 2, pp. 261–266.
  9. Samarin Yu. P., Klebanov Ya. M. Obobshchennye modeli v teorii polzuchesti konstruktsii [Generalized Models in the Theory of Creep of Structures]. Samara, Samara State Techn. Univ., 1994, 196 pp. (In Russian)
  10. Samarin Yu. P. Derivation of exponential approximations for creep curves by the method of successive isolation of exponential terms, Strength Mater., 1974, vol. 6, no. 9, pp. 1062–1066.
  11. Radchenko V. P. The mathematical model of inelastic deformation and failure of the metals by energy-type creep, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1996, no. 4, pp. 43–63 (In Russian).
  12. Radchenko V. P., Eremin Yu. A. Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements]. Moscow, Mashinostroenie-1, 2004, 264 pp. (In Russian)
  13. Radchenko V. P., Simonov A. V. Development of an automated system for building models of inelastic deformation of metals on the basis of nonparametric alignment method of experimental data, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1999, no. 7, pp. 51–62 (In Russian).
  14. Katanakha N. A., Semenov A. S., Getsov L. B. Unified model of steady-state and transient creep and identification of its parameters, Strength Mater., 2013, vol. 45, no. 4, pp. 495–505.
  15. Belleneger E., Bussy P. Phenomenological modeling and numerical simulation of different modes of creep damage evolution, Int. J. Solids Struct., 2001, vol. 38, no. 4, pp. 577–604.
  16. Besseling J. F. Plasticity and creep theory in engineering mechanics, In: Topics in Applied Continuum Mechanics. Vienna, Springer, 1974, pp. 115–135.
  17. Benedetti M., Fontanari V., Scandi P., Ricardo C.L.A., Bandini M. Reverse bending fatigue of shot peened 7075-T651 aluminium alloy: The role of residual stress relaxation, Int. J. Fatigue, 2009, vol. 31, no. 8–9, pp. 1225–1236.
  18. Draper N. R., Smith H. Applied Regression Analysis, Wiley Series in Probability and Statistics. New York, John Wiley and Sons, 1998, xix+716 pp.
  19. Demidenko E. Z. Lineinaia i nelineinaia regressii [Linear and Nonlinear Regressions]. Moscow, Finance and Statistics, 1981, 302 pp. (In Russian)
  20. Zoteev V. E., Makarov R. Yu. A numerical method for the determination of parameters of the strain softening creep model, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, vol. 20, no. 2, pp. 328–341 (In Russian).
  21. Zoteev V. E., Makarov R. Yu. Numerical method of estimation of parameters of deformation of creep in the exponential dependency of parametr of weakening from the strain, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2016, no. 3 (51), pp. 18–25 (In Russian).
  22. Granovskii V. A., Siraya T. N. Metody obrabotki eksperimental'nykh dannykh pri izmereniiakh [Methods of Processing Experimental Data in Measurements]. Leningrad, Energoatomizdat, 1990, 288 pp. (In Russian)
  23. Seber G. A. F., Lee A. J. Linear Regression Analysis, Wiley Series in Probability and Statistics. Hoboken, NJ, Wiley, 2003, xvi+565 pp.
  24. Vuchkov I., Boyadzhieva L., Solakov O. Prikladnoi lineinyi regressionnyi analiz [Applied Linear Regression Analysis]. Moscow, Finance and Statistics, 1987, 238 pp. (In Russian)
  25. Zoteev V. E. Parametricheskaia identifikatsiia dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii [Parametric Identification of Dissipative Mechanical Systems Based on Difference Equations]. Moscow, Mashinostroenie, 2009, 344 pp. (In Russian)
  26. Zoteev V. E. A numerical method of nonlinear estimation based on difference equations, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 4, pp. 669–701 (In Russian).
  27. Boyko S. V. Modeling the shaping of structural elements in nonstationary creep conditions, Thesis of Dissertation (Cand. Phys. & Math. Sci.). Novosibirsk, Lavrentiev Inst. of Hydrodynamics, 2020, 133 pp. (In Russian)

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies