Численное и экспериментальное исследование чистого изгиба балок из титанового сплава АБВТ-20 в условиях ползучести с учетом различных свойств на растяжение и сжатие



Цитировать

Полный текст

Аннотация

Рассматривается решение задачи чистого изгиба балки прямоугольного сечения в режиме ползучести с учетом различных свойств ползучести на растяжение и сжатие. Построен алгоритм и разработано программное обеспечение для математического моделирования процесса перераспределения напряжений по высоте балки с учетом накопления повреждений. Моделирование процессов ползучести разупрочняющегося материала происходит на основе уравнений кинетической теории ползучести и повреждаемости. Численное решение задачи проводится на основе метода Рунге-Кутты-Мерсона. Проведено сравнение результатов моделирования с экспериментальными данными чистого изгиба балок прямоугольного сечения из титанового сплава АБВТ-20 при действии знакопеременного изгибающего момента в условиях продолжительного воздействия температуры (750 °C), которое показало удовлетворительное соответствие результатов расчета экспериментальным данным.

Полный текст

Численное и экспериментальное исследование чистого изгиба балок из титанового сплава. . . Введение. Сохранение ресурса и свойств материала изделия на стадии его производства является актуальной проблемой современного авиастроения. Одним из возможных путей решения является внедрение в производство технологий формообразования, основанных на явлении ползучести и сверхпластического течения материала. Такие технологические процессы широко внедряются в производство зарубежными авиапроизводителями (Airbus, Boeing) [1, 2], поскольку позволяют сокращать количество технологических циклов обработки изделия на стадии формообразования, совмещать процессы медленного деформирования и старения, сохранять ресурс пластической деформации. Широкое распространение технологий медленного горячего формообразования затруднено наличием малого количества исследований о влиянии условий технологических процессов на прочностные свойства материалов в готовом изделии (прочность, долговечность, ударная вязкость, трещиностойкость и т. п.). Отсутствие информации об оптимальных режимах деформирования различных конструкционных материалов также не способствует широкому внедрению таких технологий. Варианты технологии горячего формообразования в режимах ползучести применяются на нескольких авиастроительных заводах России. В США и Великобритании процесс формовки при температуре старения начали применять в восьмидесятых годах XX века. В иностранной литературе рассматриваемый процесс называют “creep age forming” (сокращенно CAF) [1-5]. Целью применения технологии являлась формовка больших алюминиевых панелей (около 15 м) для получения профиля крыла и поверхностей сложной геометрии. Технологию формовки применяли к элементам конструкций самолетов Airbus 330 и 340, придавая кривизну стрингерам при помощи кручения и изгиба [1]. В работе [1] приведен обзор ключевых зарубежных компаний, развивающих подход формовки в режимах старения, а также представлен один из подходов к формообразованию деталей в этом режиме при помощи вакуумизации, когда для прижатия заготовки к оснастке используют вакуумный мешок-диафрагму. Авторы подчеркивают, что после формовки прямоугольной пластины в цилиндрическую поверхность деталь испытывает около 70% распружинивания. Показано, что при растяжении образцов из алюминиевого сплава 7075 (аналог отечественного сплава В95) в режиме старения остаточные напряжения не превосходят 25 МПа по сравнению с напряжениями в 150 МПа при холодной вытяжке. Авторы предлагают для создания больших оребренных панелей сложной геометрии отдельно формовать ребра и саму панель, а затем сваривать их между собой. Чтобы избежать искажений поверхности после распружинивания, используются различные методы, например термофиксация. В работе [6] приводится решение обратной задачи формообразования крупногабаритных монолитных разнотолщинных панелей двойной кривизны из сплава В95очТФ (состояние поставки) в режиме термофиксации для температуры старения, равной 165℃. Аббревиатура «оч» означает «очень чистый», которая указывает на низкое содержание кремния в сплаве (до 0.1%, что в пять раз меньше, чем в сплаве В95). Стоит отметить, что в [6] учтено изменение механических свойств сплава В95очТФ в процессе термической фиксации. Неучет такой эволюции свойств завышает максимальные напряжения в формуемой панели почти в три раза. Приводятся вариационная форму431 И я в о й н е н С. В., Л а р и ч к и н А. Ю., К о л о д е з е в В. Е. лировка задачи и результаты конечноэлементного моделирования формообразования панели крыла в среде MSC.Marc. Решения, основанные на выводах из данной работы, применяются для серийного формообразования крыловых панелей с использованием эффектов ползучести и деформационного старения на «КнААЗ» филиала ПАО «Компания «Сухой». Алгоритмы расчета формообразования деталей усложняются в случае модели материала, разносопротивляющегося растяжению и сжатию при ползучести. В [7] решены трехмерные задачи по кручению металлических пластин в условиях ползучести под действием постоянных сосредоточенных сил, приложенных в ее углах. Представлен алгоритм определения компонент тензора напряжений, реализованный в модели материала конечноэлементного пакета PIONER (разработка ИГиЛ СО РАН) для определяющих соотношений ползучести с учетом разных свойств материала при растяжении и сжатии. Приведено сравнение результатов трех случаев моделирования кручения толстой плиты с экспериментальными данными. В первом случае в законе ползучести использовались параметры, полученные из одноосных экспериментов только на сжатие, во втором - только на растяжение, в третьем - обе группы параметров. Использование модели с учетом различия свойств на растяжение и сжатие по сравнению с моделью, где учитываются свойства ползучести только на растяжение или только на сжатие, позволяет добиться удовлетворительного соответствия расчетов и данных эксперимента, что увеличивает точность формы упреждающей оснастки. Отметим, что модель разносопротивляемости внедрена в конечноэлементный пакет PIONER, что позволяет решать трехмерные задачи ползучести. Монография [8] посвящена фундаментальному описанию явления ползучести. В ней приведены решения различных задач длительной прочности с приложением к технике, в том числе задач изгиба балок, пластин, оболочек. Представлены подходы к описанию ползучести и накоплению повреждений при сложном напряженном состоянии. В частности, получены решения задачи чистого изгиба балок в режимах ползучести с учетом различных свойств на растяжение и сжатие, а также поврежденности материала. Зависимость скорости ползучести и скорости изменения сплошности от напряжений принимается в виде дробно-степенных функций. Приводится решение с учетом фронта разрушения. В [2] приводятся различные способы формовки титановых сплавов, в том числе в режимах ползучести и сверхпластичности. В работе [2] отмечено, что использование явления сверхпластичности для формообразования деталей истребителя F-15 приводит к снижению их стоимости на 58% и снижению массы на 31%. Приводится пример, что ранее деталь двигателя гондолы для самолета Boeing 757 изготовливалась из сорок одной детали и более двухсот крепежных узлов (материал Ti-6Al-4V), а с применением формовки в режиме сверхпластического течения эта деталь формообразуется из одного листа. Однако добиться режимов сверхпластического течения не так просто: наравне с основными параметрами процесса формовки - температурой и скоростью деформирования - рядом авторов отмечается важность влияния размера зерна материала [9]. Управление этими тремя параметрами позволяет деформировать материалы в режимах сверхпластичности. Управление предполагает подготовку зерна материала, знание температуры динамической ре432 Численное и экспериментальное исследование чистого изгиба балок из титанового сплава. . . кристаллизации и регулирование скорости формовки. Размер зерна существенно влияет на механические свойства материала. Уменьшение зерна титанового сплава ВТ-6 (Ti-6Al-4V) до 10 мкм после всесторонней ковки дает понижение температуры сверхпластического течения и усиление эффекта диффузионной сварки [10]. На основе этих научных достижений удалось создать технологию получения полой лопатки турбины для вентилятора двигателя ПД-14. Эффекты, связанные с процессом ползучести, используются и для последующей обработки изделий. Упрочнение поверхностных слоев лопаток и иных деталей двигателя проводится при помощи дробеструйной обработки, алмазного выглаживания, прокатки роликом, что увеличивает срок службы изделия. В технике известно благоприятное влияние сжимающих напряжений в поверхностных слоях деталей на их усталостную долговечность. Вопросы, связанные с релаксацией напряжений в поверхностно-упрочненных слоях элементов конструкций при ползучести, достаточно полно освещены в работе [11]. Авторы приводят способы учета пластических деформаций на фоне процесса ползучести. Дается обширный материал описания кинетики процесса накопления повреждений при ползучести. Приводится метод восстановления картины напряжений в поверхностном слое детали цилиндрической формы и описание процесса релаксации напряжений по его глубине. Эффекты, связанные с формообразованием в режиме ползучести, часто зависят от времени выдержки при температуре. В настоящей работе рассмотрены особенности знакопеременного изгиба прямоугольных балок из титанового сплава АБВТ-20 в режиме ползучести с учетом температурной выдержки без нагрузки. В данной работе используется степенной закон ползучести с учетом поврежденности материала, в отличие от работы [12], где используется дробно-степенная зависимость скорости деформаций ползучести от напряжения. Кроме этого, в настоящей работе в реологической модели для исследуемого материала используется зависимость скорости ползучести от времени температурной выдержки, которая наблюдалась в экспериментальных исследованиях [13]. 1. Математическое моделирование чистого изгиба балок. Рассмотрим процесс ползучести чистого изгиба прямоугольной балки шириной
×

Об авторах

Светлана Владимировна Иявойнен

Институт гидродинамики им. М.А. Лаврентьева СО РАН

Email: svetaiyavoynen@gmail.com
аспирант; младший научный сотрудник; лаб. статической прочности Россия, 630090, Новосибирск, Лаврентьева проспект, 15

Алексей Юрьевич Ларичкин

Институт гидродинамики им. М.А. Лаврентьева СО РАН

Email: larichking@gmail.com
кандидат физико-математических наук; научный сотрудник; лаб. статической прочности Россия, 630090, Новосибирск, Лаврентьева проспект, 15

Вадим Евгеньевич Колодезев

Институт гидродинамики им. М.А. Лаврентьева СО РАН

Email: kolodezev.vadim@yandex.ru
кандидат технических наук; инженер-технолог; лаб. статической прочности Россия, 630090, Новосибирск, Лаврентьева проспект, 15

Список литературы

  1. Ribeiro F. C., Marinho E. P., Inforzato D. J., Costa P. R., Batalha G. F. Creep age forming: a short review of fundaments and applications // Journal of Achievements in Materials and Manufacturing Engineering, 2010. vol. 43, no. 1. pp. 353-361, Available at http://jamme.acmsse.h2.pl/papers_vol43_1/43139.pdf (August 24, 2018).
  2. Beal J. D., Boyer R., Sanders D. Forming of titanium and titanium Alloys / ASM Handbook. vol. 14B, Metalworking: Sheet Forming. ASM International, 2006. pp. 656-669.
  3. Yang Y., Zhan L., Ma Q. et al. Effect of pre-deformation on Creep age forming of AA2219 plate: Springback, microstructures and mechanical properties // J. Mater. Process Technology, 2016. vol. 229. pp. 697-702. doi: 10.1016/j.jmatprotec.2015.10.030.
  4. Lam A. C. L., Shi Z., Yang H. et al. Creep-age forming AA2219 plates with different stiffener designs and pre-form age conditions: Experimental and finite element studies // J. Mater. Process Technology, 2015. vol. 219. pp. 155-163. doi: 10.1016/j.jmatprotec.2014.12.012.
  5. Yang Y., Zhan L., Shen R. et al. Effect of pre-deformation on creep age forming of 2219 aluminum alloy: Experimental and constitutive modelling // Mater. Sci. Eng. A, 2017. vol. 683. pp. 227-235. doi: 10.1016/j.msea.2016.12.024.
  6. Олейников А. И., Бормотин К. С. Моделирование формообразования крыловых панелей в режиме ползучести с деформационным старением в решениях обратных задач // Ученые записки КнАГТУ, 2015. № II-1(22). С. 346-365.
  7. Коробейников С. Н., Олейников А. И., Горев Б. В., Бормотин К. С. Математическое моделирование процессов ползучести металлических изделий из материалов, имеющих разные свойства при растяжении и сжатии // Вычислительные методы и программирование: Новые вычислительные технологии, 2008. Т. 9, № 1. С. 346-365.
  8. Локощенко А. М. Ползучесть и длительная прочность металлов. М.: Физматлит, 2016. 504 с.
  9. Кайбышев О. А. Сверхпластичность промышленных сплавов. М.: Металлургия, 1984. 264 с.
  10. Сафиуллин Р. В. Сверхпластическая формовка и сварка давлением многослойных полых конструкций. Часть II. Опыт ИПСМ РАН // Письма о материалах, 2012. Т. 2, № 1. С. 36-39.
  11. Радченко В. П., Саушкин М. Н. Ползучесть и релаксация остаточных напряжений в упрочненных конструкциях. М.: Машиностроение-1, 2005. 226 с.
  12. Локощенко А. М., Агахи К. А., Фомин Л. В. Изгиб балки при ползучести с учетом поврежденности и разносопротивляемости материала // Машиностроение и инженерное образование, 2012. № 3(32). С. 29-35.
  13. Колодезев В. Е., Горев Б. В., Ларичкин A. Ю., Шевцова Л. И. Чистый изгиб балки из сплава АБВТ-20 в режиме ползучести при знакопеременном нагружении // Технология машиностроения, 2017. № 2(176). С. 11-16.
  14. Соснин О. В., Горев Б. В., Никитенко А. Ф. Энергетический вариант теории ползучести. Новосибирск: ИГиЛ СО АН СССР, 1986. 95 с.
  15. Никитенко А. Ф. Ползучесть и длительная прочность металлических материалов. Новосибирск: Новосиб. гос. архит.-строит. ун-т, 1997. 278 с.
  16. Горев Б. В., Любашевская И. В., Панамарев В. А., Иявойнен С. В. Описание процесса ползучести и разрушения современных конструкционных материалов с использованием кинетических уравнений в энергетической форме // ПМТФ, 2014. Т. 55, № 6. С. 132-144.
  17. Горев Б. В. К расчету на неустановившуюся ползучесть изгибаемого бруса из материала с разными характеристиками на растяжение и сжатие / Динамика сплошной среды: сб. науч. тр., Вып. 14. Новосибирск: АН СССР. Сиб. отд-ние. Ин-т гидродинамики, 1973. С. 44-51.
  18. Кузнецов Е. Б., Леонов С. С. Чистый изгиб балки из разномодульного материала в условиях ползучести // Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2013. Т. 6, № 4. С. 26-38.
  19. Соснин О. В. О ползучести материалов с разными характеристиками на растяжение и сжатие // ПМТФ, 1970. № 5. С. 136-139.
  20. Merson R. H. An operational method for the study of integration processes / Proc. Symp. Data Processing, Weapons Res. Establ. Salisbury. Salisbury, 1957. pp. 110-125 ; Pospelov V. V. Kutta-Merson method: Encyclopedia of Mathematics, 2014, Available at http://www.encyclopediaofmath.org/index.php?title=Kutta-Merson_method&oldid=33669 (August 24, 2018).
  21. Pao Y. C. Engineering analysis. Interactive methods and programs with FORTRAN, QuickBASIC, MATLAB, and Mathematica. Boca Raton, FL: CRC Press, 1998. 360 pp.
  22. Работнов Ю. Н. Ползучесть элементов конструкций. М.: Наука, 2014. 752 с.
  23. Горев Б. В., Клопотов И. Д. К описанию процесса ползучести и длительной прочности по уравнениям с одним скалярным параметром повреждаемости // ПМТФ, 1994. № 5. С. 92-102.
  24. Цвелодуб И. Ю. К построению определяющих уравнений ползучести ортотропных материалов с различными свойствами при растяжении и сжатии // ПМТФ, 2012. № 6. С. 98-101.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах