Динамическая термоустойчивость геометрически нерегулярной пологой цилиндрической оболочки под действием периодической, по временной координате, нагрузки

Обложка


Цитировать

Полный текст

Аннотация

В рамках модели типа Лява рассматривается геометрически нерегулярная изотропная пологая цилиндрическая оболочка (ГНО). За основу берется строгая континуальная модель «оболочка–ребра». Предполагается, что ГНО нагрета до постоянной температуры $\theta_0$, два противоположных края подвергаются воздействию периодической по временной координате тангенциальной нагрузке, амплитуда и частота которой известны ($p(t)=p_0 \cos \vartheta t$). Задача определения динамической неустойчивости (ДН) термоупругой системы сводится к рассмотрению сингулярной системы трех дифференциальных уравнений динамической термоустойчивости ГНО в перемещениях, содержащих слагаемые с тангенциальными усилиями в форме Брайена. Эти усилия, возникающие в оболочке при ее нагреве, предварительно определяются на основе замкнутых решений сингулярной системы дифференциальных уравнений безмоментной термоупругости ГНО. Конкретизированная исходная система уравнений преобразуется к уравнениям Матье, которые записаны в терминах классической атермической теории гладких пластин, содержащих поправки на геометрические параметры — кривизну, относительную высоту подкрепляющих элементов, их число и температуру. Определяются первые три области ДН ГНО. Проводится количественный анализ влияния геометрических параметров упругой системы и температуры на конфигурацию областей ДН и предельного значения коэффициента возбуждения.

Об авторах

Григорий Николаевич Белосточный

Саратовский государственный университет им. Н. Г. Чернышевского, механико-математический факультет

Email: belostochny@mail.ru
доктор технических наук, профессор

Ольга Анатольевна Мыльцина

Саратовский государственный университет им. Н. Г. Чернышевского, механико-математический факультет

Email: omyltcina@yandex.ru
кандидат физико-математических наук, без звания

Список литературы

  1. Жилин П. А., "Линейная теория ребристых оболочек", Изв. АН СССР. МТТ, 1970, № 4, 150–162
  2. Белосточный Г. Н., Ульянова О. И., "Континуальная модель композиции из оболочек вращения с термочувствительной толщиной", Изв. РАН. МТТ, 2011, № 2, 32-40
  3. Белосточный Г. Н., Русина Е. А., "Оболочки и геометрически нерегулярные пластинки с термочувствительной толщиной", Докл. Росс. акад. естеств. наук, 1999, № 1, 28-37
  4. Абовский Н.П., "О вариационных уравнения для гибких ребристых и других конструктивно-анизотропных пологих оболочек", Теория пластин и оболочек, Наука, М., 1971, 4-7
  5. Назаров А. А., Основы теории и методы расчета пологих оболочек, Стройиздат, Л., М., 1966
  6. Antosik P., Mikusinski J., Sikorski R., Theory of Distributions: The Sequential Approach, Elsevier Scientific, Amsterdam, 1973
  7. Рассудов В. М., "Деформации пологих оболочек, подкрепленных ребрами жесткости", Учен. зап. Сарат. ун-та, 52 (1956), 51-91
  8. Геккелер И.В., Статика упругого тела, Гостехиздат, Л., М., 1934
  9. Огибалов П. М., Вопросы динамики и устойчивости оболочек, МГУ, М., 1963
  10. Огибалов П. М., Грибанов В. Ф., Термоустойчивость пластин и оболочек, МГУ, М., 1958
  11. Белосточный Г.Н., "Аналитические методы определения замкнутых интегралов сингулярных дифференциальных уравнений термоупругости геометрически нерегулярных оболочек", Доклады Академии военных наук, 1999, № 1, 14-25
  12. Белосточный Г. Н., Русина Е. А., "Динамическая термоустойчивость трансверсально-изотропных пластин под действием периодических нагрузок", Современные проблемы нелинейной механики конструкций, взаимодействующих с агрессивными средами, Сб. науч. тр. межвуз. науч. конф., Саратов, 2000, 175-180
  13. Белосточный Г. Н., Цветкова О. А., "Геометрически нерегулярные пластинки под действием периодического по времени температурного поля", Проблемы прочности элементов конструкций под действием нагрузок и рабочих сред, Сарат. гос. техн. ун-т, Саратов, 2002, 64-72 с.
  14. Мыльцина О. А., Полиенко А. В., Белосточный Г. Н., "Динамическая устойчивость нагретых геометрически нерегулярных пластин на основе модели Рейснера", Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 21:4 (2017), 760-772
  15. Stoker J. J., Nonlinear Vibrations in Mechanical and Electrical Systems, Wiley Classics Library, Wiley, New York, 1992
  16. Болотин В. В., Динамическая устойчивость упругих систем, ГИТТЛ, М., 1956
  17. Timoshenko S. P., Vibration Problems in Engineering, Constable, London, 1937
  18. Филиппов А. П., Методы расчета сооружений на колебания, Госстройиздат, М., Л., 1941
  19. Тимошенко С. П., Устойчивость упругих систем, ОГИЗ–Гостехизд, М., Л., 1946
  20. Амбарцумян С. А., Теория анизотропных пластин, Наука, М., 1967

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Авторы, Самарский государственный технический университет, 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.