Hybrid control system for memristive arrays: development of a high-level scheme and implementation prospects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article proposes a memristive array control architecture that allows working with passive crossbar structures, which significantly increases the layout density and reduces the technological complexity of production. The main functional blocks of the system are described.

Full Text

Restricted Access

About the authors

A. Tokarev

МИРЭА – Технологический университет (РТУ МИРЭА)

Author for correspondence.
Email: santokar5@gmail.com
Russian Federation

References

  1. Yadav D.N., Thangkhiew P.L., Chakraborty S., et al. Efficient grouping approach for fault tolerant weight mapping in memristive crossbar array // Memories – Materials, Devices, Circuits and Systems 4 (2023) 100045 https://doi.org/10.1016/ j.memori.2023.100045.
  2. Zhang B., Uysal N., Fan D., Ewetz R., et al. Handling Stuck-at-Fault Defects Using Matrix Transformation for Robust Inference of DNNs // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. Vol. 39. No. 10. PP. 2448–2460. Oct. 2020, doi: 10.1109/TCAD.2019.2944582.
  3. Xu Y., Jin S., Wang Y., et al. Aggressive Fault Tolerance for Memristor Crossbar-Based Neural Network Accelerators by Operational Unit Level Weight Mapping // IEEE Access. Vol. 9. PP. 102828–102834, 2021, doi: 10.1109/ACCESS.2021.3097724.
  4. Xia L., Huangfu W., Tang T., et al. Stuck-at Fault Tolerance in RRAM Computing Systems // IEEE Journal on Emerging and Selected Topics in Circuits and Systems. Vol. 8. No. 1. PP. 102–115. March 2018, doi: 10.1109/JETCAS.2017.2776980.
  5. Roy K., et al. Towards spike-based machine intelligence with neuromorphic computing // Nature 13 575. 607-617 (2019). http://doi.org/10.1038/s41586-019-1677-2.
  6. Xiaoyang Liu & Zhigang Zeng. Memristor crossbar architectures for implementing deep neural networks // Springer Nature Link. 2022. Vol. 8. PP. 787–802.
  7. Yao P., Wu H., Gao B., et al. Fully hardware-implemented memristor convolutional neural network // Nature. 2020. Vol. 577. PP. 641–646, 641–646 (2020). http://doi.org/10.1038/s41586-020-1942-4.
  8. Zhang J., Cheng L., Zeng H., Song Y. Thermal Management in Memristor-Based Crossbar Arrays for High-Density Nonvolatile Memories // IEEE Transactions on Electron Devices. Vol. 65. Is. 1. Jan. 2018.
  9. Deen M.J. RF noise models of MOSFETs- A review // NSTI-Nanotech. 2004. Vol. 2.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. High-level functional diagram of interaction with the crossbar

Download (242KB)

Copyright (c) 2025 Tokarev A.