Электрооптические свойства полимерно-диспергированных жидких кристаллов, допированных наночастицами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Представлен обзор существующих на данный момент технологий изготовления и описаны свойства полимерно-диспергированных жидких кристаллов (ПДЖК), применяемых в «умных» стеклах, электрооптических затворах для формирования трехмерного изображения, в медицинских приборах.

Полный текст

Доступ закрыт

Об авторах

В. Беляев

Российский университет дружбы народов им. Патриса Лумумбы; Государственный университет просвещения

Автор, ответственный за переписку.
Email: journal@electronics.ru

д. т. н.

Россия, Москва; Мытищи

В. Авдеенков

Российский университет дружбы народов им. Патриса Лумумбы

Email: journal@electronics.ru
Россия, Москва

Список литературы

  1. Zhao W. et al. Photopolymerization enforced stratification in liquid crystal materials // Prog. Polym. Sci. 2021.114: 101365. doi: 10.1016/j.progpolymsci.2021.101365.
  2. Miyagi K. et al. Elucidation of the mechanism of stress-induced circular dichroic inversion of cellulosic/polymer liquid crystalline composites // Macromolecules. 2020. 53(8):3250–4. doi: 10.1021/acs.macromol.9b02741.
  3. Pozhidaev E.P. et al. Polymer dispersed liquid crystals with electrically controlled light scattering in the visible and near-infrared ranges // Opt. Mater. Express. 2020. 10(12):3030–40. doi: 10.1364/OME.410163.
  4. Higgins D.A. Probing the mesoscopic chemical and physical properties of polymer-dispersed liquid crystals // Adv. Mater. 2000. 12(4):251–64. doi: 10.1002/(SICI)1521-4095(200002) 12:43.0.CO;2-4
  5. He Z. et al. Passive polymer-dispersed liquid crystal enabled multi-focal plane displays // Opt. Express. 2020. 28(10):15294–9. doi: 10.1364/OE.392489.
  6. Maschke U. et al. Electrooptical properties of polymerdispersed liquid crystals // Macromol Rapid Commun. 2002. 23(3):159–70. doi: 10.1002/1521-3927(20020201)23:33.0.CO;2–1.
  7. Shen W. et al. Electrically switchable light transmittance of epoxy-mercaptan polymer / nematic liquid crystal composites with controllable microstructures // Polymer. 2018; 160:53–64. doi: 10.1016/j.polymer.2018.11.022.
  8. Hemaida A. et al. Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing // Sol. Energy. 2020. 195:185–93. doi: 10.1016/j.solener.2019.11.024.
  9. Ghosh A. et al. Daylight characteristics of a polymer dispersed liquid crystal switchable glazing// Sol. Energy. Mater. Sol. Cells. 2018. 174:572–6. doi: 10.1016/j.solmat.2017.09.047.
  10. Ying-Guey Fuh A. et al. Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals // Opt. Express. 2009. 17(9):7088–94. doi: 10.1364/OE.17.007088.
  11. Yuan Y. et al. Low driving-voltage, polarizer-free, scattering-controllable liquid crystal device based on randomly patterned photoalignment // Opt. Lett. 2020; 45(13):3697–700. doi: 10.1364/OL.393091.
  12. Singh A.K., Malik P. Textural, electro-optical, dielectric and fluorescence studies of citrate buffer stabilized gold nanoparticles doped in polymer-dispersed liquid crystals composites // Liq. Cryst. 2022. 49(6):864–74. doi: 10.1080/02678292.2022.2027532.
  13. Mani S. et al. Effect of polymer concentration on optical and electrical properties of liquid crystals for photonic applications // Mater Today: Proceedings. 2022. 62(13):7035–9. doi: 10.1016/j.matpr.2022.01.057.
  14. Liang X. et al. Programmable electrooptical performances in a dual-frequency liquid crystals / polymer composite system // Polymer. 2018. 149:164–8. doi: 10.1016/j.polymer.2018.06.081.
  15. Zhou Y. et al. Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices // Macromol. Chem. Phys. 2020. 221(18):2000185. doi: 10.1002/macp.202000185.
  16. Serbutoviez C. et al. Polymerization induced phase separation. 2. Morphology of polymer-dispersed liquid crystal thin films // Macromolecules. 1996. 29(24):7690–8. doi: 10.1021/ma960293.
  17. Justice R.S. et al. Interface morphology and phase separation in polymer-dispersed liquid crystal composites. Polymer 2005; 46(12):4465–73. doi: 10.1016/j.polymer.2005.02.029.
  18. Kim M. et al. Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows // ACS Appl. Mater. Interfaces. 2015. 7(32):17904–9. doi: 10.1021/acsami.5b04496.
  19. Ono H., Kawatsuki N. Effects of molecular weight on morphology and electrooptical properties of polymethylmethacrylate / liquid crystal composites fabricated by a solvent-induced phase separation method // Polym Bull (Berlin) 1995. 35(3):365–70. doi: 10.1007/BF00963136.
  20. Dhara P., Mukherjee R. Phase separation and dewetting of polymer dispersed liquid crystal (PDLC) thin films on flat and patterned substrates // J. Mol. Liq. 2021. 341:117360. doi: 10.1016/j.molliq.2021.117360.
  21. Coates D. Polymer-dispersed liquid crystals // J. Mater. Chem. 1995. 5(12):2063–72. doi: 10.1039/JM9950502063.
  22. Zhang H. et al. The effect of the LC mixtures with the different clearing point on temperature dependence of the electro-optical properties of polymer dispersed liquid crystals // Molecular Crystals and Liquid Crystals. 2021. 726(1), 27–40. doi: 10.1080/15421406.2021.1934641.
  23. Zhang H. et al. (2022) Fabrication of epoxy/thiol polymer-based polymer-dispersed liquid crystals containing a catalyst with multi-amine structures // Optical Materials 133(3):112883. doi: 10.1016/j.optmat.2022.112883.
  24. Wang Х. et al. (2022) TiO2 doped polymer dispersed and stabilised liquid crystal smart film with high contrast ratio, low driving voltage and short response time // Liquid Crystals. doi: 10.1080/02678292.2022.2048912.
  25. Liang Z. et al. (2021) Influence of ZnO NPs on morphological and electro-optical properties of polymerdispersed liquid crystals // Liquid Crystals, 48:12, 1699–1708, doi: 10.1080/02678292.2021.1898055.
  26. Jia M. et al. (2022) The Electro-optical study of Al2O3 nanoparticles doped polymer dispersed liquid crystal films // Liquid Crystals, 49:1, 39–49. doi: 10.1080/02678292.2021.1943024.
  27. Liang Z. et al. The relationship between crosslinker, liquid crystal, and magnetic nanomaterial doping on electro-optical properties of PDLC // Liquid Crystals 2021; 48(3):1–11. doi: 10.1080/02678292.2021.1919767.
  28. Miao Z., Zeng Liang & Dong Wang. (2022) Nano-doped PDLC combined with photochromic material for bifunctional optical control films // Liquid Crystals, doi: 10.1080/02678292.2022.2058102.
  29. He Z. et al. Effect of silicon-based nanofillers on the electric-optical performance of polymer dispersed liquid crystals // Liquid Crystals. (2022). doi: 10.1080/02678292.2022.2055180.
  30. Belyaev V. PDLC shutters for 3D imaging // Proc. SPIE. 2005. 5821: 117–122.
  31. Belyaev V., Kostyuk A., Kovtonyuk N. Multilayer PDLC Screen for Holography and Displaying of Non-Compact Objects // SID Symposium Digest, San Jose, USA, 2001. 32: 170–173.
  32. Ji Y.-Y. et al. Terahertz birefringence anisotropy and relaxation effects in polymer-dispersed liquid crystal doped with gold nanoparticles // Optics Express. 2020. 28(12): 17253-17265. doi: 10.1364/OE.392773
  33. Altmann K. et al. Polymer stabilized liquid crystal phase shifter for terahertz waves // Optics Express. 2013. 21(10): 12395-12400. doi: 10.1364/OE.21.012395.
  34. Zhang X. et al. Tunable terahertz phase shifter based on dielectric artificial birefringence grating filled with polymer dispersed liquid crystal // Optical Materials Express. 2020. 10(2): 282-292.
  35. Yu H. et al. Liquid Crystal-Tuned Planar Optics in Terahertz Range. Appl. Sci. 2023. 13: 1428. https://doi.org/10.3390/app13031428.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема изготовления и микроструктуры ПДЖК

Скачать (375KB)
3. Рис. 2. Химическая структура используемых УФ-мономеров и фотоинициатора

Скачать (146KB)
4. Рис. 3. а – зависимость коэффициента пропускания от приложенного напряжения; б – пропускание в выключенном состоянии Toff и контраст; в – пороговое и рабочее напряжения образцов С1–С5

Скачать (127KB)
5. Рис. 4. а – фотографии образца С4 в разных состояниях; б – фотографии образца C4 в состоянии при выключенном поле; в – при включенном


© Беляев В., Авдеенков В., 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах