Features of the Spectral Surface Estimation of Titanium Implants for Animals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the study results relating to the material state of the implants made of titanium alloy and coated with chitosan. The implants have been studied before and after preclinical use in animals. A feature of this research method is the use of Raman scattering spectroscopy with a high sensitivity in the region of 400–1 800 cm−1. Confirmation of the implant surface study results was obtained using the scanning electron microscopy. The details of spectral changes are taken as an indirect estimate of the complete biodegradation of the implant coating after one month.

Full Text

Restricted Access

About the authors

P. E. Timchenko

Korolev Samara National Research University

Author for correspondence.
Email: journal@electronics.ru
Russian Federation, Samara

E. V. Timchenko

Korolev Samara National Research University

Email: journal@electronics.ru
Russian Federation, Samara

D. A. Dolgushkin

Samara State Medical University, Institute of Experimental Medicine and Biotechnology

Email: journal@electronics.ru
Russian Federation, Samara

O. O. Frolov

Korolev Samara National Research University

Email: journal@electronics.ru
Russian Federation, Samara

A. N. Nikolaenko

Samara State Medical University, Institute of Experimental Medicine and Biotechnology

Email: journal@electronics.ru
Russian Federation, Samara

L. T. Volova

Samara State Medical University, Institute of Experimental Medicine and Biotechnology

Email: journal@electronics.ru
Russian Federation, Samara

A. Yu. Ionov

Korolev Samara National Research University

Email: journal@electronics.ru
Russian Federation, Samara

References

  1. Privalov V. E., SHemanin V. G. Lidarnoe uravnenie s uchetom konechnoj shiriny linii. Izvestiya RAN. 2015;79(2):170–180. Привалов В. Е., Шеманин В. Г. Лидарное уравнение с учетом конечной ширины линии. Известия РАН. 2015;79(2):170–180.
  2. Krafft C., Dietzek B., Popp J. Raman and CARS microspectroscopy of cells and tissues. Analyst. 2009;6(134):1046–1057
  3. Ramakrishnaiah R., Rehman G., Basavarajappa S., Khuraif A., Durgesh B., Khan A., Rehman I. Applications of Raman spectroscopy in dentistry: Analysis of tooth structur. Appl. Spectrosc. Rev. 2015; 50(4):332–350.
  4. Orunbaev A. Primenenie metodov IK-spektroskopii v medicine. Science and Education Scientific. 2021:2(4): 215–220. Орунбаев A. Применение методов ИК-спектроскопии в медицине. Science and Education Scientific. 2021:2(4): 215–220.
  5. Grigorenko V. B., Morozova L. V. Primenenie rastrovoj elektronnoj mikroskopii dlya izucheniya nachal’nyh stadij razrusheniya. Aviacionnye materialy i tekhnologii. 2018;1(50):77–87. Григоренко В. Б., Морозова Л. В. Применение растровой электронной микроскопии для изучения начальных стадий разрушения. Авиационные материалы и технологии. 2018;1 (50):77–87.
  6. Chouirfa H., Bouloussa H., Migonney V., Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. ActaBiomater. 2019; 83: 37–54.
  7. Guan B., Wang H., Xu R., Zheng G., Yang J., Liu Z., Cao M., Wu M., Song J., Li N., Li T., Cai Q., Yang X., Li Y., Zhang X. Establishing antibacterial multilayer films on the surface of direct metal laser sintered titanium primed with phase-transited lysozyme. Sci Rep. 2016, 6: 36408.
  8. Privalov V. E., Shemanin V. G. Experimental Probing of Industrial Aerodisperse Flows. Scientific and Technical Bulletin of St. Petersburg Polytechnical University. Physics. Sciences. 2014, 206(4): 64–73.
  9. Romanò C. L., Scarponi S., Gallazzi E., Romanò D., Drago L. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J OrthopSurg Res. 2015;10:157.
  10. Sánchez-Bodón J., Andrade Del Olmo J., Alonso J. M., Moreno-Benítez I., Vilas-Vilela J.L., Pérez-Álvarez L. Bioactive coatings on titanium: a review on hydroxylation, self-assembled monolayers (sams) and surface modification strategies. Polymers (Basel). 2021, 14(1):165.
  11. Del Olmo J. A., Pérez-Álvarez L., Pacha-Olivenza M.Á., Ruiz-Rubio L., Gartziandia O., Vilas-Vilela J.L., Alonso J. M. Antibacterial catechol-based hyaluronic acid, chitosan and poly (N-vinyl pyrrolidone) coatings onto Ti6Al4V surfaces for application as biomedical implant. Int J BiolMacromol. 2021, 183:1222–1235.
  12. Katan T., Kargl R., Mohan T., Steindorfer T., Mozetič M., Kovač J., StanaKleinschek K. Solid Phase Peptide Synthesis on Chitosan Thin Films. Biomacromolecules. 2022, 23(3): 731–742.
  13. Lv H., Chen Z., Yang X., Cen L., Zhang X., Gao P. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent. 2014, 42(11):1464–72.
  14. Kumari S., Tiyyagura H. R., Pottathara Y. B., Sadasivuni K. K., Ponnamma D., Douglas T. E.L., Skirtach A. G., Mohan M. K. Surface functionalization of chitosan as a coating material for orthopaedic applications: A comprehensive review. Carbohydr Polym. 2021, 255:117487. doi: 10.1016/j.carbpol.2020.117487. PMID: 33436247.
  15. Pellis A., Guebitz G. M., Nyanhongo G. S. Chitosan: sources, processing and modification techniques. Gels. 2022, 8(7):393. doi: 10.3390/gels8070393. PMID: 35877478; PMCID: PMC9322947.
  16. Tian Y., Wu D., Wu D., Cui Y., Ren G., Wang Y., Wang J., Peng C Chitosan-based biomaterial scaffolds for the repair of infected bone defects. Front BioengBiotechnol. 2022, 10:899760. doi: 10.3389/fbioe.2022.899760. PMID: 35600891; PMCID: PMC9114740.
  17. Timchenko E. V., Timchenko P. E., Pisareva E. V., Daniel M. A., Volova L. T., Fedotov A. A., Frolov O. O., Subatovich A. N. Optical analysis of bone tissue by Raman spectroscopy in experimental osteoporosis and its correction using allogeneic hydroxyapatite. Journal of Optical Technology. 2020, 87(3): 161–167.
  18. Timchenko P. E., Timchenko E. V., Volova L. T., Zybin M. A., Frolov O. O., Dolgushov G. G. Optical Assessment of Dentin Materials. Optical Memory and Neural Networks. 2020, 29(4): 354–357.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Samples of VT6 titanium in the form of bars with the chitosan-based coating in a sterile package.

Download (2MB)
3. Fig. 2. Sample implantation of the rat scapula

Download (449KB)
4. Fig.3. Scanning electron microscopy of a VT6 titanium chitosan-coated sample, magnification 30

Download (194KB)
5. Fig.4. Scanning electron microscopy of a VT6 titanium chitosan-coated sample, magnification 1000. Inhomogeneous coating areas have a smooth and uneven relief

Download (213KB)
6. Fig. 5. Scanning electron microscopy of a VT6 titanium chitosan-coated sample, magnification 2000: a - area with uneven relief; b - area covered with a transparent film

Download (390KB)
7. Fig.6. Scanning electron microscopy of a VT6 titanium chitosan-coated sample, magnification 1 000. Peeling of a film coating area

Download (198KB)
8. Fig. 7. Normalized Raman spectra of the studied VT6 titanium chitosan-coated samples: 1 – before implantation, 2 – 1 week after implantation, 3 – 1 month after the animal withdrawal from the experiment

Download (521KB)
9. Fig. 8. Calculation results: a) Linear discriminant function graph: 1 – before implantation, 2 – 1 week after implantation, 3 – 1 month after the animal withdrawal from the experiment; b) Factor structure coefficient values

Download (162KB)

Copyright (c) 2023 Timchenko P.E., Timchenko E.V., Dolgushkin D.A., Frolov O.O., Nikolaenko A.N., Volova L.T., Ionov A.Y.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies