Structural and optical properties of gallium sulfide thin films obtained by plasma-enhanced chemical vapor deposition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Gallium sulfides have a wide band gap in the range of 2.85–3.05 eV and are promising for use in the field of photovoltaics and optoelectronics, nonlinear optics, optoelectronics, terahertz devices, and also as the passivation layers in the group III–V semiconductor devices. In this paper, thin films of gallium sulfide GaxS1-x were obtained for the first time by the plasma-enhanced chemical vapor deposition (PECVD) using a chlorine-involved transport reaction, while the direct high-purity elements (Ga and S) were applied as the original substances. The nonequilibrium low-temperature plasma of an RF discharge (40.68 MHz) at a reduced pressure (0.01 Torr) was the initiator of chemical transformations. The dependences of composition, surface morphology, structural and optical properties of the obtained films on the plasma discharge power were studied.

Full Text

Restricted Access

About the authors

L. A. Mochalov

Nizhny Novgorod State Technical University n. a.R. Alekseev; Lobachevsky University

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0002-7842-8563
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

M. A. Kudryashov

Nizhny Novgorod State Technical University n. a.R. Alekseev; Lobachevsky University

Email: journal@electronics.ru
ORCID iD: 0000-0002-3090-1622
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

M. A. Vshivtsev

Nizhny Novgorod State Technical University n. a.R. Alekseev

Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod

I. O. Prokhorov

Nizhny Novgorod State Technical University n. a.R. Alekseev

Email: journal@electronics.ru
ORCID iD: 0009-0003-5180-5394
Russian Federation, Nizhny Novgorod

P. A. Yunin

Lobachevsky University

Email: journal@electronics.ru
ORCID iD: 0000-0001-7081-2934
Russian Federation, Nizhny Novgorod

T. S. Sazanova

Nizhny Novgorod State Technical University n. a.R. Alekseev

Email: journal@electronics.ru
ORCID iD: 0000-0003-2580-821X
Russian Federation, Nizhny Novgorod

Yu. P. Kudryashova

Lobachevsky University

Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod

V. M. Malyshev

Nizhny Novgorod State Technical University n. a.R. Alekseev

Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod

A. D. Kulikov

Nizhny Novgorod State Technical University n. a.R. Alekseev

Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod

V. M. Vorotyntsev

Nizhny Novgorod State Technical University n. a.R. Alekseev; Lobachevsky University

Email: journal@electronics.ru
ORCID iD: 0000-0001-9451-937X
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

References

  1. Alderhami S. A., Collison D., Lewis D. J., McNaughter P.D., O’Brien P., Spencer B. F., Vitorica-Yrezabala I., Whitehead G. Accessing γ-Ga2S3 by solventless thermolysis of gallium xanthates: a low-temperature limit for crystalline products. Dalton Trans. 2019; 48(41):15605–15612. doi: 10.1039/C9DT02061F.
  2. Zappia M. I., Bianca G., Bellani S., Curreli N., Sofer Z., Serri M., Najafi L., Piccinni M., Oropesa-Nuñez R., Marvan P., Pellegrini V., Kriegel I., Prato M., Cupolillo A., Bonaccorso F. Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors. J. Phys. Chem. C. 2021; 125(22):11857–11866. doi: 10.1021/acs.jpcc.1c03597.
  3. Jones A. C., O’Brien P. CVD of Compound Semiconductors: Precursor Synthesis, Development and Applications. 1997; CHAPTER 1. Basic Concepts. P. 1–42. doi: 10.1002/9783527614639.ch1.
  4. Cuculescu E., Evtodiev I., Caraman M., Rusu M. Optical and photoelectrical properties of GaS and CdTe thin FILMS, components of GaS/CdTe heterojunctions. J. Optoelectron. Adv. Mater. 2006; 8(3):1077–1081.
  5. Lu Y., Chen J., Chen T., Shu Y., Chang R.-J., Sheng Y., Shautsova V., Mkhize N., Holdway P., Bhaskaran H., Warner J. H. Controlling Defects in Continuous 2D GaS Films for High-Performance Wavelength-Tunable UV-Discriminating Photodetectors. Adv. Mater. 2020; 32(7):1906958. doi: 10.1002/adma.201906958.
  6. Alsaif M. M.Y.A., Pillai N., Kuriakose S., Walia S., Jannat A., Xu K., Alkathiri T., Mohiuddin M., Daeneke T., Kalantar-Zadeh K., Zhen Ou J., Zavabeti A. Atomically Thin Ga2S3 from Skin of Liquid Metals for Electrical, Optical, and Sensing Applications. ACS Appl. Nano Mater. 2019; 2(7):4665–4672. doi: 10.1021/acsanm.9b01133.
  7. Yang S., Li Y., Wang X., Huo N., Xia J.-B., Li S.-S., Li J. High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale. 2014; 6(5):2582–2587. doi: 10.1039/C3NR05965K.
  8. Gutiérrez Y., Giangregorio M. M., Dicorato S., Palumbo F., Losurdo M. Exploring the Thickness-Dependence of the Properties of Layered Gallium Sulfide. Front. Chem. 2021; 9:781467. doi: 10.3389/fchem.2021.781467.
  9. Cingolani A., Minafra A., Tantalo P., Paorici C. Edge emission in GaSe and Ga S. Phys. Status Solidi A. 1971; 4(1): K83–K85. doi: 10.1002/pssa.2210040150.
  10. Jung C. S., Shojaei F., Park K., Oh J. Y., Im H. S., Jang D. M., Park J., Kang H. S. Red-to-Ultraviolet Emission Tuning of Two-Dimensional Gallium Sulfide/Selenide. ACS Nano. 2015; 9(10):9585–9593. doi: 10.1021/acsnano.5b04876.
  11. Huang Z., Huang J.-G., Kokh K. A., Svetlichnyi V. A., Shabalina A. V., Andreev Y. M., Lanskii G. V. Ga2S3: Optical properties and perspectives for THz applications. 2015. 40-th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). doi: 10.1109/irmmw-thz.2015.7327440.
  12. Ho C.-H., Chen H.-H. Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3. Sci Rep. 2014; 4:6143. doi: 10.1038/srep06143.
  13. Hu Z. M., Fei G. T., Zhang L. D. Synthesis and tunable emission of Ga2S3 quantum dots. Materials Letters. 2019; 239:17–20. doi: 10.1016/j.matlet.2018.12.046.
  14. Lu H., Chen Y., Yang K., Kuang Y., Li Z., Liu Y. Ultrafast Nonlinear Optical Response and Carrier Dynamics in Layered Gallium Sulfide (GaS) Single-Crystalline Thin Films. Front. Mater. 2021; 8:775048. doi: 10.3389/fmats.2021.775048.
  15. Kokh K., Lapin I. N., Svetlichnyi V., Galiyeva P., Bakhadur A., Andreev Y. Synthesis and Bridgman Growth of Ga2S3 Crystals. Key Eng. Mater. 2016; 683:71–76. doi: 10.4028/ href='www.scientific.net/KEM.683.71' target='_blank'>www.scientific.net/KEM.683.71.
  16. Chen X., Hou X., Cao X., Ding X., Chen L., Zhao G., Wang X. Gallium sulfide thin film grown on GaAs(100) by microwave glow discharge. Journal of Crystal Growth. 1997; 173(1–2):51–56. doi: 10.1016/s0022-0248(96)00808-1.
  17. Eriguchi K., Biaou C., Das S., Yu K. M., Wu J., Dubon O. D. Temperature-dependent growth of hexagonal and monoclinic gallium sulfide films by pulsed-laser deposition. AIP Advances. 2020; 10(10):105215. doi: 10.1063/5.0021938.
  18. Meng X., Libera J. A., Fister T. T., Zhou H., Hedlund J. K., Fenter P., Elam J. W. Atomic Layer Deposition of Gallium Sulfide Films Using Hexakis(dimethylamido)digallium and Hydrogen Sulfide. Chem. Mater. 2014; 26(2):1029–1039. doi: 10.1021/cm4031057.
  19. Ahamad T., Alshehri S. M. Green Synthesis and Characterization of Gallium(III) Sulphide (α-Ga2S3) Nanoparicles at Room Temperature. Nano Hybrids. 2014; 6:37–46. doi: 10.4028/ href='www.scientific.net/NH.6.37' target='_blank'>www.scientific.net/NH.6.37.
  20. Rao P., Kumar S., Sahoo N. K. Influence of boat material on the structure, stoichiometry and optical properties of gallium sulphide films prepared by thermal evaporation. Mater. Chem. Phys. 2015; 149–150:164–171. doi: 10.1016/j.matchemphys.2014.10.002.
  21. Kim J., Park W., Lee J.-H., Seong M.-J. Simultaneous growth of Ga2S3 and GaS thin films using physical vapor deposition with GaS powder as a single precursor. Nanotechnology. 2019; 30(38):384001. doi: 10.1088/1361-6528/ab284c.
  22. Ertap H., Baydar T., Yüksek M., Karabulut M. Structural and optical properties of gallium sulfide thin film. Turk. J. Phys. 2016; 40(3):297–303. doi: 10.3906/fiz-1604-14.
  23. Micocci G., Rella R., Tepore A. Conductivity and optical absorption in amorphous gallium sulphide thin films. Thin Solid Films. 1989; 172(2):179–183. doi: 10.1016/0040-6090(89)90647-0.
  24. Kuhs J., Hens Z., Detavernier C. Plasma enhanced atomic layer deposition of gallium sulfide thin films. J. Vac. Sci. Technol. A. 2019; 37(2):020915. doi: 10.1116/1.5079553.
  25. Sanz C., Guillén C., Gutiérrez M. T. Influence of the synthesis conditions on gallium sulfide thin films prepared by modulated flux deposition. Journal of Physics D: Applied Physics. 2009; 42(8):085108. doi: 10.1088/0022-3727/42/8/085108.
  26. Mochalov L., Logunov A., Kudryashov M. Kudryashova Yu., Vshivtsev M., Malyshev V. Lead-based chalcogenide thin films for mid-IR photoreceivers: plasma synthesis, semiconductor, and optical properties. Opt. Mater. Express. 2022; 12(4):1741–1753. doi: 10.1364/OME.455345.
  27. Mochalov L., Logunov A., Kudryashov M., Prokhorov I., Sazanova T., Yunin P., Pryakhina V., Vorotuntsev I., Malyshev V., Polyakov A., Pearton S. J. Heteroepitaxial Growth of Ga2O3 Thin Films of Various Phase Composition by Oxidation of Ga in Hydrogen-Oxygen Plasmas. ECS J. Solid State Sci. Technol. 2021; 10:073002. doi: 10.1149/2162-8777/ac0e11.
  28. Mochalov L., Logunov A., Prokhorov I., Vshivtsev M., Kudryashov M., Kudryashova Yu., Malyshev V., Spivak Yu., Greshnyakov E., Knyazev A., Fukina D., Yunin P., Moshnikov V. Variety of ZnO nanostructured materials prepared by PECVD. Opt. Quant. Electron. 2022; 54:646. doi: 10.1007/s11082-022-03979-z.
  29. Mochalov L., Logunov A., Gogova D., Zelentsov S., Prokhorov I., Starostin N., Letnianchik A., Vorotyntsev V. Synthesis of gallium oxide via interaction of gallium with iodide pentoxide in plasma. Opt. Quant. Electron. 2020; 52:510. doi: 10.1007/s11082-020-02625-w.
  30. Mochalov L., Logunov A., Prokhorov I., Sazanova T., Kudrin A., Yunin P., Zelentsov S., Letnianchik A., Starostin N., Boreman G., Vorotyntsev V. Plasma-Chemical Synthesis of Lead Sulphide Thin Films for Near-IR Photodetectors. Plasma Chem. Plasma Process. 2021; 41:493–506. doi: 10.1007/s11090-020-10123-w.
  31. Mochalov, L.A., Kudryashov, M.A., Logunov, A.A., Kudryashova, Yu. P., Malyshev V. M., Drozdov P. N., Kovalev, A.V., Vorotyntsev, V. M. Plasma-Chemical Synthesis of Ytterbium Doped As–S Thin Films. Plasma Chem. Plasma Process. 2021; 41:1661–1670. doi: 10.1007/s11090-021-10190-7.
  32. Shirai T., Reader J., Kramida A. E., Sugar J. Spectral Data for Gallium: Ga I through Ga XXXI. J. Phys. Chem. Ref. Data. 2007; 36(2):509. doi: 10.1063/1.2207144.
  33. Shakhatov V. A., Lebedev Y. A., Lacoste A., Bechu S. Emission spectroscopy of a dipolar plasma source in hydrogen under low pressures. High Temperature. 2016; 54(4):467–474. (In Russ).
  34. Шахатов В. А., Лебедев Ю. А., Lacoste A., Bechu S. Эмиссионная спектроскопия диполярного источника плазмы в водороде при низких давлениях. ТВТ. 2016; 54(4):491–499. doi: 10.7868/S0040364416040219.
  35. Horley G. A., Lazell M. R., O’Brien P. Deposition of Thin Films of Gallium Sulfide from a Novel Liquid Single-Source Precursor, Ga(SOCNEt2)3, by Aerosol-Assisted CVD. Chem. Vap. Depos. 1999; 5(5):203–205. doi: 10.1002/(SICI)1521-3862(199910)5:5%3C203:: AID-CVDE203%3E3.0.CO;2-L.
  36. Isik M., Gasanly N. M., Gasanova L. Spectroscopic ellipsometry investigation of optical properties of β-Ga2S3 single crystals. Opt. Mater. 2018; 86:95–99. doi: 10.1016/j.optmat.2018.09.049.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic layout of a plasma-chemical installation for the synthesis of gallium sulfide thin films

Download (225KB)
3. Fig. 2. Emission spectra: a) of mixtures (1 – Ar-S; 2 – Ar-Cl2-Ga and 3 – Ar-H2-Cl2-Ga-S); b) of the Ar-H2-Cl2-Ga-S mixture (at 1 – 30 W, 2 – 70 W, 3 – 100 W)

Download (343KB)
4. Fig. 3. X-ray diffraction pattern of gallium sulfide films with various compositions

Download (150KB)
5. Fig. 4. AFM images of (a) Ga37S48Cl15, (b) Ga20S80, and (c) Ga38S62 films

Download (357KB)
6. Fig. 5. Transmission spectra of gallium sulfide films with various compositions

Download (174KB)
7. Fig. 6. Absorption spectra in the Tauc coordinates for gallium sulfide films with various compositions

Download (143KB)

Copyright (c) 2023 Mochalov L.A., Kudryashov M.A., Vshivtsev M.A., Prokhorov I.O., Yunin P.A., Sazanova T.S., Kudryashova Y.P., Malyshev V.M., Kulikov A.D., Vorotyntsev V.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies