Application Study of a Refractive Biconical Axicon for Azimuthal and Radial Polarization Detection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the study results of the effect of a biconical axicon, a refractive optical element with two conical surfaces, on illumination by radiation of various polarization states, including inhomogeneous one (with azimuthal and radial polarization). The biconical axicon was previously proposed for converting a beam with circular polarization into a azimuthal polarized beam due to the beam reflection and refraction at the Brewster angle on one conical surface, followed by the beam collimation due to the second conical surface. The polarization transformations performed during diffraction of beams with various polarizations by a biconical axicon are calculated using the finite difference method in the time domain. Based on the numerical simulations, it is shown that the biconical axicon made of K14 glass (with the refractive index n = 1.4958) can be used as a detector for azimuthal and radially polarized beams based on the intensity pattern in one plane.

Full Text

Restricted Access

About the authors

Pavel A. Khorin

Samara National Research University; Image Processing Systems Institute Russian Academy of Sciences – branch of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences

Author for correspondence.
Email: paul.95.de@gmail.com
ORCID iD: 0000-0002-2248-614X

Ph.D. in Physical and Mathematical Sciences, Senior Researcher in the Research Laboratory of Automated Systems for Scientific Research (NIL-35), mathematical modeling, diffractive optics, optical and digital image processing

Russian Federation, Samara; Samara

Sergey A. Degtyarev

Samara National Research University; Image Processing Systems Institute Russian Academy of Sciences – branch of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences

Email: journal@electronics.ru
ORCID iD: 0000-0002-0874-005X

Ph.D. in Physical and Mathematical Sciences, Associate Professor, wave and singular optics

Russian Federation, Samara; Samara

Svetlana N. Khonina

Samara National Research University; Image Processing Systems Institute Russian Academy of Sciences – branch of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences

Email: journal@electronics.ru
ORCID iD: 0000-0001-6765-4373

Doctor of Physical and Mathematical Sciences, Professor of Samara National Research University, Main Researcher, diffractive optics, singular optics, mode and polarization transformations, optical manipulation, optical and digital image processing

Russian Federation, Samara; Samara

References

  1. Goldstein D. H. Polarized Light. – CRC Press: Boca Raton. FL. USA. 2003.
  2. Wang X. L., Li Y., Chen J., Guo C. S., Ding J. Wang H. T. A new type of vector fields with hybrid states of polarization. Opt. Express. 2010; 18: 10786–10795.
  3. Bauer T., Banzer P., Bouchard F., Orlov S., Marrucci L., Santamato E., Boyd R. W., Karimi E., Leuchs G. Multi-twist polarization ribbon topologies in highly-confined optical fields. New J. Phys. 2019; 21: 053020.
  4. Milione G., Nguyen, T.A., Leach J., Nolan D. A., Alfano R. R. Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett. 2015; 40: 4887–4890.
  5. Khonina S. N., Kazanskiy N. L., Butt M. A., Karpeev S. V. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electronic Advances. 2022; 5(8): 210127-(25pp). https://doi.org/10.29026/oea.2022.210127.
  6. Akent’ev A.S., Sadovnikov M. A., Sokolov A. L., Simonov G. V. Polarization analysis of the beam-steering device of quantum optical systems. Opt. Spectrosc. 2017; 122:1008–1014.
  7. Ndagano B., Nape I., Cox M. A., Rosales-Guzman C., Forbes A. Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol. 2018; 36: 292–301.
  8. Oron D., Tal E., Silberberg Y. Depth-resolved multiphoton polarization microscopy by third-harmonic generation. Opt. Lett. 2003; 28: 2315–2317.
  9. Serrels K., Ramsay E., Warburton R., Reid D. Nanoscale optical microscopy in the vectorial focusing regime. Nat. Photonics. 2008; 2:311–314.
  10. Masuda K., Nakano S., Barada D., Kumakura M., Miyamoto K., Omatsu T. Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam. Opt. Express. 2017; 25:12499–12507.
  11. Porfirev A. P., Khonina S. N., Ivliev N. A., Porfirev D. P. Laser processing of chalcogenide glasses using laser fields with a spatially varying polarization distribution. Optics & Laser Technology. 2023;167:109716. https://doi.org/10.1016/j.optlastec.2023.109716.
  12. Passilly N., de Saint D. R., Aït-Ameur K., Treussart F., Hierle R., Roch J.-F. Simple interferometric technique for generation of a radially polarized light beam. J. Opt. Soc. Am. A. 2005; 22: 984–991.
  13. Tidwell S. C., Ford D. H., Kimura W. D. Generating radially polarized beams interferometrically. Appl. Opt. 1990; 29: 2234–2239.
  14. Liu S., Li P., Peng T., Zhao J. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Opt. Express. 2012; 20: 21715–21721.
  15. Sokolov A. L., Murashkin V. V. Diffraction polarization optical elements with radial symmetry. Opt. Spectrosc. 2011; 111:859–865.
  16. Khonina S. N., Karpeev S. V. Generating inhomogeneously polarized higher-order laser beams by use of diffractive optical elements. J. Opt. Soc. Am. A. 2011; 28:2115–2123.
  17. Khonina S. N., Karpeev S. V., Alferov S. V. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter. Optics Letters. 2012; 37(12): 2385–2387. https://doi.org/10.1364/OL.37.002385.
  18. Karpeev S. V., Podlipnov V. V., Algubili A. M. An interference scheme for generating inhomogeneously polarized laser radiation using a spatial light modulator. Comput. Opt. 2020; 4: 214–218.
  19. Ru-Yue Zhong, Zhi-Han Zhu, Hai-Jun Wu, Carmelo Rosales-Guzmán, Shu-Wei Song, Bao-Sen Shi. Gouy-phase-mediated propagation variations and revivals of transverse structure in vectorially structured light. Physical Review A. 2021;103:053520. doi: 10.1103/PhysRevA.103.053520.
  20. Khonina S. N., Porfirev A. P. Harnessing of inhomogeneously polarized Hermite–Gaussian vector beams to manage the 3D spin angular momentum density distribution. Nanophotonics. 2022;11(4): 697–712. https://doi.org/10.1515/nanoph-2021-0418.
  21. Bomzon Z., Biener G., Kleiner V., Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 2002; 27: 285–287.
  22. Machavariani G., Lumer Y., Moshe I., Meir A., Jackel S., Davidson N. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Appl. Opt. 2007,46: 3304–3310.
  23. Zh. Man, Ch. Min, Y. Zhang, Z. Shen, and X.-C. Yuan. Arbitrary vector beams with selective polarization states patterned by tailored polarizing films. Laser Phys. 2013; 23(10): 105001.
  24. Rubin N. A., Zaidi A., Juhl M., Li R. P., Mueller J. B., Devlin R. C., Leosson K., Capasso F. Polarization state generation and measurement with a single metasurface. Opt. Express. 2018 26: 21455–21478.
  25. Khonina S. N., Karpeev S. V., Paranin V. D., Morozov A. A. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals. Physics Letters A. 2017; 381: 2444–2455. https://doi.org/10.1016/j.physleta.2017.05.025.
  26. Khonina S. N., Degtyarev S. A., Ustinov A. V., Porfirev A. P. Metalenses for the generation of vector Lissajous beams with a complex Poynting vector density. Optics Express. 2021;29(12):18651–18662. https://doi.org/10.1364/OE.428453.
  27. Khonina S. N., Porfirev A. P., Karpeev S. V. Recognition of polarization and phase states of light based on the interaction of nonuniformly polarized laser beams with singular phase structures. Optics Express. 2019; 27(13):18484–18492. https://doi.org/ 10.1364/OE.27.018484.
  28. Beresna M., Gecevičius M., Kazansky P. G., Gertus T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 2011; 98: 201101.
  29. Tovar A. A. Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams. J. Opt. Soc. Am. A. 1998;1: 2705–2711.
  30. Kozawa Y.; Sato, S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett. 2005; 30, 3063–3065.
  31. Radwell N., Hawley R. D., Gotte J. B., Franke-Arnold S. Achromatic vector vortex beams from a glass cone. Nat. Commun. 2016; 7, 10654.
  32. Zhang, Y., Zeng A., Wang Y., Huang H. A method for measuring the base angle of axicon lens based on chromatic dispersion. Opt. Commun. 2015; 346, 69–73.
  33. Gubaev M. S., Degtiarev S. A., Strelkov IU. S., Volotovskii S. G., Ivliev N. A., KHonina S. N. Formirovanie vektornogo puchka s pomoshchiu konicheskoi prelomliaiushchei poverkhnosti Kompiuternaia optika. 2021;45(6): 828–838. DOI: 10 18287 2412-6179-CO-1036.
  34. Degtyarev S. A., Karpeev S. V., Ivliev N. A., Strelkov Yu.S., Podlipnov V. V. and Khonina S. N., Refractive Bi-Conic Axicon (Volcone) for Polarization Conversion of Monochromatic Radiation. Photonics. 2022;9:421. https://doi.org/10.3390/photonics9060421.
  35. Ahluwalia B. P. S., Yuan X.-C., Tao S. H., Cheong W. C., Zhang L. S., Wang H. Micromanipulation of high and low indices microparticles using a microfabricated double axicon. J. Appl. Phys. 2006;99(11): 113104.
  36. Alferov S. V., Khonina S. N., Karpeev S. V. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J. Opt. Soc. Am. A. 2014;31(4), 802–807.
  37. Kuchmizhak A., Gurbatov S., Nepomniaschii A., Vitrik O., Kulchin Y. High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams. Appl. Opt. 2014;53(5):937–943.
  38. Pavelyev V., Khonina S., Degtyarev S., Tukmakov K., Reshetnikov A., Gerasimov V., Osintseva N., Knyazev B. Subwavelength Diffractive Optical Elements for Generation of Terahertz Coherent Beams with Pre-Given Polarization State. Sensors. 2023;23, 1579. https://doi.org/10.3390/s23031579.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Projections and 3D shape of a refractive biconical axicon with indication of its dimensions

Download (232KB)
3. Fig. 2. Cross section in the plane OX (y = 0) of the intensity E at the output after the biconical axicon when the element is illuminated with the Gaussian beam: a) with radial polarization; b) with azimuthal polarization

Download (253KB)
4. Table 1.

Download (808KB)
5. Table 2.

Download (683KB)
6. Table 3.

Download (401KB)
7. Table 4.

Download (464KB)

Copyright (c) 2023 Khorin P.A., Degtyarev S.A., Khonina S.N.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies