Comparison of the Influence of Irradiation Devices on Growth and Yield by the Example of Mewa F1 Cucumbers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The comparative analysis results of the influence of the optic specifications of irradiation devices with different designs on the plant growth and yield (Mewa F1 cucumbers) are given. The design of LED lamps has been optimized, and a lighting engineering model has been prepared to make a laboratory bench for studying the optical radiation effect on the plant growing process in the greenhouse conditions. The experimental prototypes of irradiation devices based on the LEDs have been prepared that ensure the plant performance with a smaller stem growth.

Full Text

Restricted Access

About the authors

Denis V. Bylkov

Fiztekh-Energo JSC

Author for correspondence.
Email: journal@electronics.ru

lighting engineer

Russian Federation, Tomsk

Dmitriy A. Poltoratskiy

Fiztekh-Energo JSC

Email: journal@electronics.ru

chief technical officer

Russian Federation, Tomsk

Vasiliy S. Soldatkin

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru

Ph.D. in technical sciences, associate professor of the Department of Radioelectronic Technologies and Environmental Monitoring

Russian Federation, Tomsk

Alena O. Lazareva

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru

Engineer of the Department of Radioelectronic Technologies and Environmental Monitoring

Russian Federation, Tomsk

Anastasiia P. Shkarupo

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru

senior lecturer, Department of Radioelectronic Technologies and Environmental Monitoring

Russian Federation, Tomsk

Egor S. Schepetkin

KDV Yashkinskiye Teplitsy LLC

Email: journal@electronics.ru

chief power engineer

Russian Federation, Polomoshnoye village, Yashkinsky district, Kemerovo region – Kuzbass

References

  1. Official website of the Security Council of the Russian Federation. URL: http://www.scrf.gov.ru/security/economic/document108.
  2. Official website of the Information and analytical agency “Institute of Agricultural Market Studies”. URL: http://ikar.ru/lenta/754.html.
  3. Official website of the “Greenhouse industry of Russia – 2022”. URL: https://www.apk-news.ru/teplichnaya-otrasl-rossii-2022-3.
  4. Gnezdova O. E., Chugunkova E. S. Energoobespechenie teplichnyh hozyajstv s generaciej elektricheskoj i teplovoj energii i vyrabotkoj CO2. Silovoe i energeticheskoe oborudovanie. Avtonomnye sistemy. 2019; 2(3):141–151. Гнездова О. Е., Чугункова Е. С. Энергообеспечение тепличных хозяйств с генерацией электрической и тепловой энергии и выработкой CO2. Силовое и энергетическое оборудование. Автономные системы. 2019; 2(3):141–151. https://doi.org/10.32464/2618-8716-2019-2-3-141-151.
  5. Official website of the LLC “MOST Production” URL: https://reflaks.ru/catalog/natrievye-zerkalnye-lampy-dnaz.html.
  6. McCree K. J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology. 1972; 9:191–216. https://doi.org/10.1016/0002-1571(71)90022-7.
  7. Soldatkin V., Yuldashova L., Shardina A., Shkarupo A., Mikhalchenko T. Device for water disinfection by ultraviolet radiation. Proceedings – 2020 7th International Congress on Energy Fluxes and Radiation Effects. EFRE 2020. 2020; 9242002:870–873. https://doi.org/10.1109/EFRE47760.2020.9242002.
  8. Höll J., Lindner S., Walter H., Joshi D. et al. Impact of pulsed UV-B stress exposure on plant performance: How recovery periods stimulate secondary metabolism while reducing adaptive growth attenuation. Plant Cell Environ. 2019; 42(3):801–814. https://doi.org/doi: 10.1111/pce.13409.
  9. Pattison P. M., Tsao J. Y., Brainard G. C., Bugbee B. LEDs for photons, physiology and food. Nature. 2018; 563(7732):493–500. https://doi.org/10.1038/s41586-018-0706-x.
  10. Park SW, Kwack Y, Chun C. Growth and propagation rate of strawberry transplants produced in a plant factory with artificial lighting as affected by separation time from stock plants. Hort Environ Biotechnol. 2018; 59:199–204. https://doi.org/10.1007/s13580-018-0027-x
  11. Meng X, Wang Z, He S, Shi L, Song Y, Lou X, He D. LED-supplied red and blue light alters the growth, antioxidant status, and photochemical potential of in vitro-grown Gerbera jamesonii plantlets. Hort Sci Technol. 2019; 37:473–489. https://doi.org/10.7235/HORT.20190048
  12. Park SW, Kim SK, Kwack Y, Chun C. Simulation of the number of strawberry transplants produced by an autotrophic transplant production method in a plant factory with artificial lighting. Horticulturae. 2020; 6:63. https://doi.org/10.3390/horticulturae6040063
  13. Lee, H., Park, S.W., Cui, M. et al. Improvement of strawberry transplant production efficiency by supplementary blue light in a plant factory using white LEDs. Hortic. Environ. Biotechnol. 2023; https://doi.org/10.1007/s13580-022-00493-9
  14. Korol V. G., Borisov V. U. Terms of cultivation for bee-pollinated cucumber karambol F1 in winter glass greenhouses. Vegetable crops of Russia. 2017; (3):49–51. https://doi.org/10.18619/2072-9146-2017-3-49-51.
  15. Khalifa S. A. M., Elshafiey E. H., Shetaia A. A., El-Wahed A. A. A., Algethami A. F., Musharraf S. G. et al. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects. 2021; 12(8):688. https://doi.org/10.3390/insects12080688.
  16. Korol V. G. Recommended cucumber hybrids for growing in greenhouses under conditions artificial lighting. Vegetable crops of Russia. 2021; (5):32–38. https://doi.org/10.18619/2072-9146-2021-5-32-38.
  17. Boos G. V., Prikupec L. B. Standartizaciya svetotekhnicheskih priborov i ustanovok dlya teplic. – OOO «VNISI»: Svetotekhnika. 2017. Боос Г. В., Прикупец Л. Б. Стандартизация светотехнических приборов и установок для теплиц.- ООО «ВНИСИ»: Светотехника. 2017.
  18. GOST R 57671-2017. Pribory obluchatel’nye so svetodiodnymi istochnikami sveta dlya teplic. Obshchie tekhnicheskie usloviya. – M.: Standartinform. 2017. ГОСТ Р 57671-2017. Приборы облучательные со светодиодными источниками света для теплиц. Общие технические условия. – М.: Стандартинформ. 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Compartment layout

Download (67KB)
3. Fig. 2. Visualization of compartments

Download (127KB)
4. Table 1. Specifications of the lamps

Download (327KB)
5. Fig. 3. Cucumber specimen No. 1, 2 in the laboratory compartment with HPS lamps 250 W

Download (245KB)
6. Fig. 4. Cucumber specimen No. 3, 4 in the laboratory compartment with Diora Unit Agro LED irradiators

Download (184KB)
7. Fig. 5. Cucumber specimen No. 5, 6 in the laboratory compartment with Diora Quadro Agro LED irradiators

Download (196KB)
8. Fig. 6. Fruits grown in the experimental compartments and ready to eat

Download (521KB)
9. Fig. 7. Emission spectrum of HPS lamps

Download (153KB)
10. Fig. 8. Emission spectrum of Diora Unit Agro LED irradiators

Download (133KB)
11. Fig. 9. Emission spectrum of Diora Quadro Agro irradiators

Download (152KB)

Copyright (c) 2023 Bylkov D.V., Poltoratskiy D.A., Soldatkin V.S., Lazareva A.O., Shkarupo A.P., Schepetkin E.S.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies