Оценка использования светодиодного освещения в сочетании с применением γ-PGA SAP пептида на рост и развитие растений мяты перечной в условиях закрытой биосистемы
- Авторы: Шелепова О.В.1, Баранова Е.Н.1, Судариков К.А.2,3, Олехнович Л.С.1, Коновалова Л.Н.1, Латушкин В.В.2,3, Гулевич А.А.4, Верник П.А.2
-
Учреждения:
- Главный ботанический сад Н. В. Цицина Российской академии наук
- АНО Институт стратегии развития
- Московская сельскохозяйственная академия имени Тимирязева Российский государственный аграрный университет
- Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии
- Выпуск: Том 18, № 6 (2024)
- Страницы: 486-498
- Раздел: Биофотоника
- URL: https://journals.eco-vector.com/1993-7296/article/view/642245
- DOI: https://doi.org/10.22184/1993-7296.FRos.2024.18.6.486.498
- ID: 642245
Цитировать
Полный текст



Аннотация
В статье исследована возможность регуляции биомассы и продуктивности Mentha piperita L. при выращивании в условиях закрытой системы Синерготрон. Приведены результаты модуляции световых параметров культивирования и использование обработок низкими концентрациями пептида за счет изменения интенсивности роста и формирования вегетативной массы. Установлено, что закрытая система позволяет выявлять тонкие механизмы изменения растений и их морфологии и метаболизма при применении вегетационных индексов GLI, EXG, VARI и традиционных критериев продуктивности, открывая новые возможности в разработке современных подходов в биотехнологии эфиромасличных растений.
Ключевые слова
Полный текст

Об авторах
О. В. Шелепова
Главный ботанический сад Н. В. Цицина Российской академии наук
Автор, ответственный за переписку.
Email: photonics@technosphera.ru
ORCID iD: 0000-0003-2011-6054
к. б. н., в. н. с.
Россия, МоскваЕ. Н. Баранова
Главный ботанический сад Н. В. Цицина Российской академии наук
Email: photonics@technosphera.ru
ORCID iD: 0000-0001-8169-9228
к. б. н., в. н. с., н. с.
Россия, МоскваК. А. Судариков
АНО Институт стратегии развития; Московская сельскохозяйственная академия имени Тимирязева Российский государственный аграрный университет
Email: photonics@technosphera.ru
ORCID iD: 0009-0005-8734-1223
инженер-исследователь
Россия, Москва; МоскваЛ. С. Олехнович
Главный ботанический сад Н. В. Цицина Российской академии наук
Email: photonics@technosphera.ru
к. б. н., н. с.
Россия, МоскваЛ. Н. Коновалова
Главный ботанический сад Н. В. Цицина Российской академии наук
Email: photonics@technosphera.ru
н. с.
Россия, МоскваВ. В. Латушкин
АНО Институт стратегии развития; Московская сельскохозяйственная академия имени Тимирязева Российский государственный аграрный университет
Email: photonics@technosphera.ru
ORCID iD: 0000-0003-1406-8965
к. б. н., c. н. с.
Россия, Москва; МоскваА. А. Гулевич
Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии
Email: photonics@technosphera.ru
ORCID iD: 0000-0003-4399-2903
к. б. н., c. н. с.
Россия, МоскваП. А. Верник
АНО Институт стратегии развития
Email: photonics@technosphera.ru
ORCID iD: 0000-0001-5850-7654
в. н. с.
Россия, МоскваСписок литературы
- Shelepova O. V., Baranova E. N., Tkacheva E. V., Evdokimenkova Y.B, Ivanovskii A. A., Konovalova L. N., Gulevich A. A. Aromatic Plants Metabolic Engineering: A review. Agronomy, 2022, 12, 3131. doi: 10.3390/agronomy12123131
- Malysheva A. G., Shelepova O. V., Yudin S. M. Transformation of the component structure of essential oil and volatile allocation of plants under the impact of artificial lighting. Gigiena i Sanitariya.2019; 98(11): 1228–1234. doi: 10.18821/0016-9900-2019-98-11-1228-1234. Малышева А. Г, Шелепова О. В., Юдин С. М. Трансформация компонентного состава эфирного масла и летучих выделений растений под влиянием искусственного освещения. Гигиена и санитария. 2019;98(11):1228–1234. doi: 10.18821/0016-9900-2019-98-11-1228-1234).
- Gupta S., Kumar A., Gupta A. K., Jnanesha A. C. et al. Industrial mint crop revolution, new opportunities, and novel cultivation ambitions: A review. Ecological Genetics and Genomics. 2023; 27: 100174. https://doi.org/10.1016/j.egg.2023.100174.
- Sharma A., Hazarika M., Heisnam P. et al. Controlled Environment Ecosystem: A plant growth system to combat climate change through soilless culture. Crop Design. 2024; 3: 100044. https://doi.org/10.1016/j.cropd.2023.100044
- Al Murad M., Razi K., Jeong B. R. et al. Light emitting diodes (LEDs) as agricultural lighting: Impact and its potential on improving physiology, flowering, and secondary metabolites of crops. Sustainability. 2021; 13(4): 1985. doi: 10.3390/su13041985
- Nájera C., Gallegos-Cedillo V.M., Ros M., Pascual J. A. Role of spectrum-light on productivity, and plant quality over vertical farming systems: bibliometric analysis. Horticulturae. 2023; 9(1): 63. https://doi.org/10.3390/horticulturae9010063
- Sena S., Soni Kumari S., Kumar V., Husen A. Light emitting diode (LED) lights for the improvement of plant performance and production: A comprehensive review. Current Research in Biotechnology. 2024; 7: 100184. https://doi.org/10.1016/j.crbiot.2024.100184
- Paradiso R., Proietti S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation, 2022; 41(2): 742–780. doi: 10.1007/s00344-021-10337-y
- Liu R. H. Health-Promoting Components of Fruits and Vegetables in the Diet. Advances in Nutrition. 2013; 4(3): 384S-392S. https://doi.org/10.3945/an.112.003517
- Ahmed H. A., Yu-Xin T., Qi-Chang Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: a review. South African Journal of Botany. 2020; 130: 75–89.
- Miao Y., Chen Q., Qu M., Gao L., Hou L. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants Scientia Horticulturae. 2019; 257: 108680. https://doi.org/10.1016/j.scienta.2019.108680
- Zha L., Liu W., Yang Q. et al. Regulation of ascorbate accumulation and metabolism in lettuce by the red: blue ratio of continuous light using LEDs. Frontiers in Plant Science. 2020; 11.
- Wong C. E., Teo Z. W.N., L. Shen L. H. Yu Seeing the lights for leafy greens in indoor vertical farming. Trends Food Science and Technology. 2020; 106: 48–63. 10.1016/j.tifs.2020.09.031
- Boros I. F., Székely G., Balázs L., Csambalik L., Sipos L. Effects of LED lighting environments on lettuce (Lactuca sativa L.) in PFAL systems – A review. Scientia Horticulturae. 2023; 321: 112351. https://doi.org/10.1016/j.scienta.2023.112351
- Wu B.-S., Mansoori M., Schwalb M. et al. Light emitting diode effect of red, blue, and amber light on photosynthesis and plant growth parameters. Journal of Photochemistry and Photobiology B: Biology. 2024; 256: 112939. https://doi.org/10.1016/j.jphotobiol.2024.112939
- Nozue H., Gomi M. Usefulness of broad-spectrum white LEDs to envision future plant factory T. Kozai (Ed.), Smart Plant Factory: The Next Generation Indoor Vertical Farms, Springer, Singapore (2018), pp. 197–210, https://doi.org/10.1007/978-981-13-1065-2_13
- Lee M.-J., Park S.-Y., Oh M.-M. Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Horticultural and Environmental Biotechnology. 2015; 56: 186–194. https://doi.org/10.1007/s13580-015-0130-1
- Thilini Deepashika Perera W.P, Navaratne S., Wickramasinghe I. Impact of spectral composition of light from light-emitting diodes (LEDs) on postharvest quality of vegetables: a review. Postharvest Biology and Technology. 2022; 191: 111955.
- Metallo R. M., Kopsell D. A., Sams C. E., Bumgarner N. R. Influence of blue/red vs. white LED light treatments on biomass, shoot morphology, and quality parameters of hydroponically grown kale. Scientia Horticulturae. 2018; 235: 189–197. https://doi.org/10.1016/j.scienta.2018.02.061
- Gao S., Wang K., Li N. et al. The growth and photosynthetic responses of white LEDs with supplemental blue light in green onion (Allium fistulosum L.) unveiled by Illumina and single-molecule real-time (SMRT) RNA-sequencing. Environmental and Experimental Botany. 2022; 197: 104835. https://doi.org/10.1016/j.envexpbot.2022.104835
- Sasani M., Ahmadzade M., Besharati H., Mirzadi Gohari A. Optimization of gamma polyglutamic acid (γ-PGA) production by Bacillus velezensis and its effect on increasing wheat growth and biocontrol of Bipolaris sorokiniana causal agent of common root rot of wheat. Biological Control of Pests and Plant Diseases, 2022, 11(2), 69–82. https://doi.org/10.22059/JBIOC.2023.364379.322
- Wang, Z.; Yang, R.; Liang, Y.; Zhang, S.; Zhang, Z.; Sun, C.; Yang, Q. Comparing efficacy of different biostimulants for hydroponically grown lettuce (Lactuca sativa L.). Agronomy. 2022; 12(4): 786. doi: 10.3390/agronomy12040786
- Guo J., Zhang J., Zhang K., Li S., Zhang Y. Effect of γ-PGA and γ-PGA SAP on soil microenvironment and the yield of winter wheat. Plos one, 2023, 18(7), e0288299. doi: 10.1371/journal.pone.0288299
- Gitelson A. A., Kaufman Y. J., Stark R., Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing Environment. 2002, 80, 76–87.
- Woebbecke D. M., Meyer G. E., VonBargen K., Mortensen D. A. Color indicators for weed identification under various soil, residue, and lighting conditions. Transactions ASAE 1995; 38: 259–269.
- Louhaichi M., Borman M. M., Johnson D. E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International 2001; 16: 65–70.
- Baranova E. N.; Kononenko N. V.; Lapshin P. V.; Nechaev T. L. et al. Superoxide Dismutase Premodulates Oxidative Stress in Plastids for Protection of Tobacco Plants from Cold Damage Ultrastructure Damage. International Journal of Molecular Sciences. 2024; 25(10): 5544. doi: 10.3390/ijms25105544
- Baranova E. N., Shelepova O. V., Zolotukhina A. A., Nesterov G. V., Sudarikov K. A., Latushkin V. V., Gulevich A. A. Application of optical methods for assessing physiological damage to wheat flag leaves. Photonics Russia. 2024; 18(4): 320–330. doi: 10.22184/1993-7296.FRos.2024.18.4.320.330 Баранова Е. Н., Шелепова О. В., Золотухина А. А., Нестеров Г. В., Судариков К. А., Латушкин В. В., Гулевич А. А. Применение оптических методов для оценки физиологических повреждений флаговых листьев пшеницы. Фотоника. 2024; 18(4): 320–330. doi: 10.22184/1993-7296.FRos.2024.18.4.320.330
- Shelepova O. V.; Olekhnovich L. S., Konovalova L. N., Khusnetdinova T. I., Gulevich A. A., Baranova E. N. Assessment of essential oil yield in three mint species in the climatic conditions of Central Russia. Agronomy Research, 2021, 19(4), 1970–1980. doi: 10.15159/AR.21.113
Дополнительные файлы
