Electron accelerator for inactivation of horseradish peroxidase enzyme

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Nanotechnology manipulates objects with characteristic dimensions of less than 100 nm. In this work, molecules of horseradish peroxidase (HRP) enzyme with dimensions of the order of 5 nm are used as objects, and the device for their inactivation is an electron accelerator, which allows us to obtain electron beam with energy of 9.7 MeV. We demonstrate that upon an irradiation dose of 25 kGy, the activity of the enzyme decreased virtually to zero. The results obtained must be taken into account in the development of methods for sterilization of food and packaging materials for food and medical products.

Full Text

Restricted Access

About the authors

Yu. D. Ivanov

Institute of Biomedical Chemistry; Joint Institute for High Temperatures of the Russian Academy of Sciences

Author for correspondence.
Email: shum230988@yandex.ru
ORCID iD: 0000-0001-5041-1914

Doct. of Sci. (Biology), Prof., Head of Laboratory

Russian Federation, Moscow; Moscow

I. D. Shumov

Institute of Biomedical Chemistry

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-9795-7065

Cand. of Sci. (Biology), Researcher

Russian Federation, Moscow

A. N. Ableev

Institute of Biomedical Chemistry

Email: shum230988@yandex.ru
ORCID iD: 0009-0004-3096-107X

Leading Engineer

Russian Federation, Moscow

A. F. Kozlov

Institute of Biomedical Chemistry

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-2117-8743

Leading Engineer

Russian Federation, Moscow

E. E. Vazhenkova

Institute of Biomedical Chemistry

Email: shum230988@yandex.ru
ORCID iD: 0009-0001-4224-8907

Laboratory assistant

Russian Federation, Moscow

V. S. Ziborov

Institute of Biomedical Chemistry; Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-7942-3337

Cand. of Sci. (Physics and Mathematics), Senior Researcher

Russian Federation, Moscow; Moscow

A. Yu. Dolgoborodov

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-7054-7341

Doct. of Sci. (Physics and Mathematics), Head of Laboratory

Russian Federation, Moscow

O. F. Petrov

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-6373-0305

Doct. of Sci. (Physics and Mathematics), Acad. of RAS, Director

Russian Federation, Moscow

S. V. Budnik

Teocortex LLC

Email: shum230988@yandex.ru
ORCID iD: 0009-0006-7597-8523

Director General

Russian Federation, Obninsk

R. S. Churyukin

Teocortex LLC

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-2845-1052

Cand. of Sci. (Biology), Chief technologist

Russian Federation, Obninsk

S. V. Novikov

Associate Printing-and-Publication Centre Technosphera

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-0943-9488

Cand. of Sci. (Tech), Deputy General Director

Russian Federation, Moscow

A. M. Tereza

N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences (FRCCP RAS)

Email: shum230988@yandex.ru
ORCID iD: 0009-0005-7985-0044

Senior Scientist, Cand. of Sci. (Physics and Mathematics)

Russian Federation, Moscow

A. I. Archakov

Institute of Biomedical Chemistry

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-2290-8090

Doct. of Sci. (Biology), Prof., Academician of RAS, Scientific Adviser

Russian Federation, Moscow

References

  1. Luo Z., Chang G., Liu Y., Ni K., Zhou T., Lv X., Yu J., Bai J., Wang X. Inactivation of suspended cells and biofilms of the gram-negative bacteria by electron beam irradiation and possible mechanisms of action. LWT Food Sci Technol 2022. Vol. 172. P. 114171. https://doi.org/10.1016/j.lwt.2022.114171
  2. Predmore A., Sanglay G.C., DiCaprio E., Li J., Uribe R.M., Lee K. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation. Int J Food Microbiol 2015. Vol. 198. PP. 28–36. https://doi.org/10.1016/j.ijfoodmicro.2014.12.024
  3. Espinosa A.C., Jesudhasan P., Arredondo R., Cepeda M., Mazari-Hiriart M., Mena K.D., Pillai S.D. Quantifying the Reduction in Potential Health Risks by Determining the Sensitivity of Poliovirus Type 1 Chat Strain and Rotavirus SA-11 to Electron Beam Irradiation of Iceberg Lettuce and Spinach. Appl Environmental Biol. 2012. Vol. 78(4). PP. 988–993. https://doi.org/10.1128/AEM.06927-11
  4. Lung H., Cheng Y., Chang Y., Huang H., Yang B.B., Wang C. Microbial decontamination of food by electron beam irradiation. Trends Food Sci Technol. 2015. Vol. 44. PP. 66–78. https://doi.org/10.1016/j.tifs.2015.03.005
  5. Tahergorabi R., Matak K.E., Jaczynski J. Application of electron beam to inactivate Salmonella in food: Recent developments. Food Res Intl. 2012. Vol. 45. PP. 685–694. https://doi.org/10.1016/j.foodres.2011.02.003
  6. Grasso E.M., Uribe-Rendon R.M., Lee K. Inactivation of Escherichia coli Inoculated onto Fresh-Cut Chopped Cabbage Using Electron-Beam Processing. J Food Protection. 2011. Vol. 74(1). PP. 115–118. https://doi.org/10.4315/0362-028X.JFP-10-281
  7. Gotzmann G., Portillo J., Wronski S., Kohl Y., Gorjup E., Schuck H., Rögner F.H., Müller M., Chaberny I.F., Schönfelder J., Wetzel G. Low-energy electron-beam treatment as alternative for on-site sterilization of highly functionalized medical products A feasibility study. Radiation Phys Chem. 2018. Vol. 150. PP. 9–19. https://doi.org/10.1016/j.radphyschem.2018.04.008
  8. Abs M., Jongen Y., Poncelet E., Bol J. The IBA rhodotron TT1000: a very high power E-beam accelerator. Radiation Phys Chem. 2004. Vol. 71. PP. 285–288. https://doi.org/10.1016/j.radphyschem.2004.03.061
  9. Cherkashina N.I., Pavlenko V.I., Abrosimov V.M., Gavrish V.M., Trofimov V.I., Budnik S.V., Churyukin R.S. Effect of 10 MeV electron irradiation on polyimide composites for space systems, Acta Astronautica. 2021. Vol. 184. PP. 59–69. https://doi.org/10.1016/j.actaastro.2021.03.032
  10. Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Progress in Nucleic Acid Res Mol Biol. 1985. Vol. 32. PP. 115–154. https://doi.org/10.1016/S0079-6603(08)60347-5
  11. Metzler D.E. Biochemistry, the Chemical Reactions of Living Cells, 1st ed.; Academic Press: Cambridge, UK, 1977.
  12. Veitch N.C. Horseradish peroxidase : a modern view of a classic enzyme. Phytochemistry. 2004. Vol. 65(3). PP. 249–259. https://doi.org/10.1016/j.phytochem.2003.10.022
  13. Welinder K.G. Amino acid sequence studies of horseradish peroxidase, Amino and carboxyl termini, cyanogen bromide and tryptic frag-ments, the complete sequence, and some structural characteristics of horseradish peroxidase. Cent Eur J Biochem. 1979. Vol. 96. PP. 483–502. https://doi.org/10.1111/j.1432-1033.1979.tb13061.x
  14. Gajhede M., David J. Schuller D.J., Henriksen A., Smith A.T., Poulos T.L. Crystal structure of horseradish peroxidase C at 2.15 Å resolution / Nature Structural Biology. 1997. Vol. 4, PP. 1032–1038. https://doi.org/10.1038/nsb1297-1032
  15. Davies P.F., Rennke H.G., Cotran R.S. Influence of molecular charge upon the endocytosis and intracellular fate of peroxidase activity in cultured arterial endothelium, J Cell Sci. 1981. Vol. 49(1). PP. 69–86. https://doi.org/10.1242/jcs.49.1.69
  16. Ivanov Y.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Ivanova I.A., Valueva A.A., Tatur V.Y., Smelov M.V., Ivanova N.D., Ziborov V.S. AFM imaging of protein aggregation in studying the impact of knotted electromagnetic field on a peroxidase. Sci Rep. 2020. Vol. 10. P. 9022. https://doi.org/10.1038/s41598-020-65888-z
  17. Ziborov V.S., Pleshakova T.O., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Larionov D.I., Evdokimov A.N., Tatur V.Y., Aleshko A.I., Sakharov K.Y., Dolgoborodov A.Y., Fortov V.E., Archakov A.I., Ivanov Y.D. The Impact of Fast-Rise-Time Electromagnetic Field and Pressure on the Aggregation of Peroxidase upon Its Adsorption onto Mica. Appl Sci. 2021. Vol. 11(24). P. 11677. https://doi.org/10.3390/app 112411677
  18. Иванов Ю.Д., Шумов И.Д., Козлов А.Ф., Ершова М.О., Валуева А.А., Иванова И.А., Татур В.Ю., Лукьяница А.А., Иванова Н.Д., Неведрова Е.Д., Зиборов В.С. АСМ-исследование пост-эффекта движения глицерина в выходной части проточной системы на адсорбционные свойства белка. НАНОИНДУСТРИЯ. 2023. № 16(2). С. 106–113. https://doi.org/10.22184/1993-8578.2023.16.2.106.113
  19. Sanders S.A., Bray R.C., Smith A.T. pH-dependent properties of a mutant horseradish peroxidase isoenzyme C in which Arg38 has been replaced with lysine, Eur J Biochem. 1994. Vol. 224. PP. 1029–1037. https://doi.org/10.1111/j.1432-1033.1994.01029.x
  20. Электронный источник: Enzymatic Assay of Peroxidase (EC 1.11.1.7) 2,20-Azino-Bis(3-Ethylbenzthiazoline-6-Sulfonic Acid) as a Substrate Sigma Prod. No. P-6782. Available online: https://www.sigmaaldrich.com/RU/en/technical-documents/protocol/protein-biology/enzymeactivity-assays/enzymatic-assay-of-peroxidase-abts-as-substrate (дата обращения 18 February 2022).
  21. Liu S., Zhao Y., Jiang W., Wu M., Ma F. Inactivation of Microcystis aeruginosa by Electron Beam Irradiation. Water Air Soil Pollut. 2014. Vol. 225. P. 2093. https://doi.org/10.1007/s11270-014-2093-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Ivanov Y.D., Shumov I.D., Ableev A.N., Kozlov A.F., Vazhenkova E.E., Ziborov V.S., Dolgoborodov A.Y., Petrov O.F., Budnik S.V., Churyukin R.S., Novikov S.V., Tereza A.M., Archakov A.I.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies