Morphology of blood cells based on atomic force microscopy data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Probe microscopy allows us to study the morphology, nanostructure of the membrane, mechanical properties and biochemical interactions of blood cells over time in liquid and in air. The mechanical properties, rigidity and elasticity of the membrane can be quantified using atomic force microscopy (AFM). AFM can be used in a variety of areas: from assessing the quality of stored blood in transfusion banks to elucidating the molecular mechanisms of oxidative damage and disease-related changes. The use of AFM in the study of red blood cells helps in understanding the causes of neurodegenerative diseases, diabetes, and miscarriages.

Full Text

Restricted Access

About the authors

A. I. Akhmetova

Lomonosov Moscow State University; Advanced Technologies Center

Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0002-5115-8030

Cand. of Sci. (Physics and Mathematics), Senior Researcher, Physical Department, Leading Specialist

Russian Federation, Moscow; Moscow

I. V. Yaminsky

Lomonosov Moscow State University; Advanced Technologies Center

Author for correspondence.
Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0001-8731-3947

Doct. of Sci. (Physics and Mathematics), Prof., Physical Department, Director General

Russian Federation, Moscow; Moscow

References

  1. Rakshak R., Bhatt S. et al. Characterizing morphological alterations in blood related disorders through Atomic Force Microscopy. Nanotheranostics. 2024. Vol. 8. No. 3. PP. 330–343. https://doi.org/10.7150/ntno.93206
  2. Lamzin I.M., Khayrullin R.M. The quality assessment of stored red blood cells probed using atomic-force microscopy. Anat Res Int. 2014. P. 869683. https://doi.org/10.1155/2014/869683
  3. Lekka M., Fornal M. et al. Erythrocyte stiffness probed using atomic force microscope. Biorheology. 2005. Vol. 42. No. 4. PP. 307–317. https://doi.org/10.1177/0006355X2005042004004
  4. Langari A., Strijkova V. et al. Morphometric and Nanomechanical Features of Erythrocytes Characteristic of Early Pregnancy Loss. International Journal of Molecular Sciences. 2022. Vol. 23. No. 9. P. 4512. https://doi.org/10.3390/ijms23094512
  5. Kaczmarska M.; Grosicki M. et al. Temporal sequence of the human RBCs’ vesiculation observed in nano-scale with application of AFM and complementary techniques. Nanomed. Nanotechnol. Biol. Med. 2020. Vol. 28. P. 102221. https://doi.org/10.1016/j.nano.2020.102221
  6. Li H., Lykotrafitis G. Vesiculation of healthy and defective red blood cells. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2015. Vol. 92. P. 012715. https://doi.org/10.1103/PhysRevE.92.012715
  7. Said A.S., Rogers S.C., Doctor A. Physiologic impact of circulating RBC microparticles upon blood-vascular interactions. Front. Physiol. 2017. Vol. 8. P. 1120. https://doi.org/10.3389/fphys.2017.01120
  8. McMahon Timothy J. Red Blood Cell Deformability, Vasoactive Mediators, and Adhesion. Front. Physiol. 2019. Vol. 10. P. 1417. https://doi.org/10.3389/fphys.2019.01417
  9. Barshtein G., Pajic-Lijakovic I., Gural A. Deformability of Stored Red Blood Cells. Front. Physiol. 2021. Vol. 12. P. 12. https://doi.org/10.3389/fphys.2021.722896
  10. Gov N., Safran S.A. Red blood cell shape and fluctuations: Cytoskeleton confinement and ATP activity. J. Biol. Phys. 2005. Vol. 31. PP. 453–464. https://doi.org/10.1007/s10867-005-6472-7
  11. Lim H.W.G., Wortis M., Mukhopadhyay R. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: Evidence for the bilayer- couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. PP. 16766–16769. https://doi.org/10.1073/pnas.202617299
  12. Sabina R.L., Wandersee N.J., Hillery C.A. Ca2+-CaM activation of AMP deaminase contributes to adenine nucleotide dysregulation and phosphatidylserine externalization in human sickle erythrocytes. Br. J. Haematol. 2009. Vol. 144. PP. 434–445. https://doi.org/10.1111/j.1365-2141.2008.07473.x
  13. Marumoto Y., Kaibara M., Taniguchi I. Erythrocyte deformability and adenosine triphosphate (ATP) levels in normal pregnancy and puerperium. Nihon Sanka Fujinka Gakkai Zasshi. 1984. Vol. 36. PP. 2079–2084.
  14. Strijkova-Kenderova V., Todinova S. et al. Morphometry and Stiffness of Red Blood Cells—Signatures of Neurodegenerative Diseases and Aging. Int. J. Mol. Sci. 2022. Vol. 23. P. 227. https://doi.org/10.3390/ijms23010227
  15. Sergunova V.A., Chernyaev A.P. et al. Nanostructure of erythrocyte membranes in blood intoxication. A study using atomic force microscopy. Almanac of Clinical Medicine. 2016. Vol. 44. PP. 234–241. https://doi.org/10.18786/2072-0505-2016-44-2-234-241
  16. Kozlova E., Chernysh A. et al. Atomic force microscopy study of red blood cell membrane nanostructure during oxidation-reduction processes. J Mol Recognit. 2018. Vol. 31. No. 10. P. e2724. https://doi.org/10.1002/jmr.2724
  17. P.H.J. Wilding. Causes of obesity. Pract Diabetes Int. 2001. https://doi.org/10.1002/pdi.277
  18. Gaman A., Osiac E. et al. Surface morphology of leukemic cells from chronic myeloid leukemia under atomic force microscopy. Current health sciences journal. 2013. Vol. 39. No. 1. PP. 45–47.
  19. Alexandrova A., Antonova N., Skorkina M.Y. et al. Evaluation of the elastic properties and topography of leukocytes’ surface in patients with type 2 diabetes mellitus using atomic force microscope. Ser. Biomech. 2017. Vol. 31. PP. 16–24.
  20. AlSalhi S., Devanesan M. S. et al. Impact of Diabetes Mellitus on Human Erythrocytes: Atomic Force Microscopy and Spectral Investigations. Int. J. Environ. Res. Public Health. 2018. Vol. 15. P. 2368. https://doi.org/10.3390/ijerph15112368
  21. Loyola-Leyva A., Loyola-Rodríguez J.P. et al. Application of atomic force microscopy to assess erythrocytes morphology in early stages of diabetes. A pilot study. Micron. 2021. Vol. 141. P. 102982. https://doi.org/10.1016/j.micron.2020.102982
  22. Saira T. et al. Diagnosis of thalassemia and iron deficiency anemia using confocal and atomic force microscopy. Laser Phys. Lett. 2017. Vol. 14. P. 115703. https://doi.org/10.1088/1612-202X/aa8bca
  23. Wu Q., Liu J. et al. Mechanism of megaloblastic anemia combined with hemolysis. Bioengineered. 2021. Vol. 12. No. 1. PP. 6703–6712. https://doi.org/10.1080/21655979.2021.1952366
  24. Grechko A.V., Molchanov I.V., Sergunova V.A., Kozlova E.K., Chernysh A.M. Erythrocyte membrane defects in patients with impaired brain function (pilot study). General Reanimatology. 2019. Vol. 15. No. 6. PP. 11–20. https://doi.org/10.15360/1813-9779-2019-6-11-20
  25. Sales M.V., Tanabe E.L. et al. COVID-19 Infection Changes the Functions and Morphology of Erythrocytes: A Multidisciplinary Study. Journal of the Brazilian Chemical Society. 2023. Vol. 34. PP. 1185–1196. https://doi.org/10.21577/0103-5053.20230031
  26. Sovetnikov T.O., Akhmetova A.I. et al. Scanning probe microscopy in assessing blood cells roughness. Bio-Medical Engineering. 2023. https://doi.org/10.1007/s10527-023-10253-3
  27. Trukhova A.A., Akhmetova A.I., Yaminsky I.V. 3D visualization of erythrocytes by atomic force microscopy. NANOINDUSTRY. 2023. Vol. 16. No. 3–4. https://doi.org/10.22184/1993-8578.2023.16.3-4.180.184
  28. Shi H., Li A., Yin J. et al. AFM study of the cytoskeletal structures of malaria infected erythrocytes. IFMBE. 2009. Vol. 23. PP. 1965–68.
  29. Sinitsyna O.V., Akhmetova A.I., Yaminsky I.V. Atomic force microscopy of erythrocytes: new diagnostic possibilities. Medicine and High Technologies. 2022. Vol. 1. PP. 9–12. https://doi.org/10.34219/2306-3645-2022-12-1-9-12

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Erythrocytes in AFM in air, predominantly in the form of discocytes, but with noticeable appearance of irregularities and spikes

Download (1MB)
3. Fig.2. Erythrocytes are in the shape of a biconcave disk. On the left, a partially ovalocyte is visible

Download (1MB)
4. Fig.3. Echinocytes in AFM in the air

Download (1MB)

Copyright (c) 2025 Akhmetova A.I., Yaminsky I.V.