Morphology of blood cells based on atomic force microscopy data
- Authors: Akhmetova A.I.1,2, Yaminsky I.V.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Advanced Technologies Center
- Issue: Vol 18, No 5 (2025)
- Pages: 266–274
- Section: Nanotechnologies
- URL: https://journals.eco-vector.com/1993-8578/article/view/688648
- DOI: https://doi.org/10.22184/1993-8578.2025.18.5.266.274
- ID: 688648
Cite item
Abstract
Probe microscopy allows us to study the morphology, nanostructure of the membrane, mechanical properties and biochemical interactions of blood cells over time in liquid and in air. The mechanical properties, rigidity and elasticity of the membrane can be quantified using atomic force microscopy (AFM). AFM can be used in a variety of areas: from assessing the quality of stored blood in transfusion banks to elucidating the molecular mechanisms of oxidative damage and disease-related changes. The use of AFM in the study of red blood cells helps in understanding the causes of neurodegenerative diseases, diabetes, and miscarriages.
Full Text

About the authors
A. I. Akhmetova
Lomonosov Moscow State University; Advanced Technologies Center
Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0002-5115-8030
Cand. of Sci. (Physics and Mathematics), Senior Researcher, Physical Department, Leading Specialist
Russian Federation, Moscow; MoscowI. V. Yaminsky
Lomonosov Moscow State University; Advanced Technologies Center
Author for correspondence.
Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0001-8731-3947
Doct. of Sci. (Physics and Mathematics), Prof., Physical Department, Director General
Russian Federation, Moscow; MoscowReferences
- Rakshak R., Bhatt S. et al. Characterizing morphological alterations in blood related disorders through Atomic Force Microscopy. Nanotheranostics. 2024. Vol. 8. No. 3. PP. 330–343. https://doi.org/10.7150/ntno.93206
- Lamzin I.M., Khayrullin R.M. The quality assessment of stored red blood cells probed using atomic-force microscopy. Anat Res Int. 2014. P. 869683. https://doi.org/10.1155/2014/869683
- Lekka M., Fornal M. et al. Erythrocyte stiffness probed using atomic force microscope. Biorheology. 2005. Vol. 42. No. 4. PP. 307–317. https://doi.org/10.1177/0006355X2005042004004
- Langari A., Strijkova V. et al. Morphometric and Nanomechanical Features of Erythrocytes Characteristic of Early Pregnancy Loss. International Journal of Molecular Sciences. 2022. Vol. 23. No. 9. P. 4512. https://doi.org/10.3390/ijms23094512
- Kaczmarska M.; Grosicki M. et al. Temporal sequence of the human RBCs’ vesiculation observed in nano-scale with application of AFM and complementary techniques. Nanomed. Nanotechnol. Biol. Med. 2020. Vol. 28. P. 102221. https://doi.org/10.1016/j.nano.2020.102221
- Li H., Lykotrafitis G. Vesiculation of healthy and defective red blood cells. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2015. Vol. 92. P. 012715. https://doi.org/10.1103/PhysRevE.92.012715
- Said A.S., Rogers S.C., Doctor A. Physiologic impact of circulating RBC microparticles upon blood-vascular interactions. Front. Physiol. 2017. Vol. 8. P. 1120. https://doi.org/10.3389/fphys.2017.01120
- McMahon Timothy J. Red Blood Cell Deformability, Vasoactive Mediators, and Adhesion. Front. Physiol. 2019. Vol. 10. P. 1417. https://doi.org/10.3389/fphys.2019.01417
- Barshtein G., Pajic-Lijakovic I., Gural A. Deformability of Stored Red Blood Cells. Front. Physiol. 2021. Vol. 12. P. 12. https://doi.org/10.3389/fphys.2021.722896
- Gov N., Safran S.A. Red blood cell shape and fluctuations: Cytoskeleton confinement and ATP activity. J. Biol. Phys. 2005. Vol. 31. PP. 453–464. https://doi.org/10.1007/s10867-005-6472-7
- Lim H.W.G., Wortis M., Mukhopadhyay R. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: Evidence for the bilayer- couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. PP. 16766–16769. https://doi.org/10.1073/pnas.202617299
- Sabina R.L., Wandersee N.J., Hillery C.A. Ca2+-CaM activation of AMP deaminase contributes to adenine nucleotide dysregulation and phosphatidylserine externalization in human sickle erythrocytes. Br. J. Haematol. 2009. Vol. 144. PP. 434–445. https://doi.org/10.1111/j.1365-2141.2008.07473.x
- Marumoto Y., Kaibara M., Taniguchi I. Erythrocyte deformability and adenosine triphosphate (ATP) levels in normal pregnancy and puerperium. Nihon Sanka Fujinka Gakkai Zasshi. 1984. Vol. 36. PP. 2079–2084.
- Strijkova-Kenderova V., Todinova S. et al. Morphometry and Stiffness of Red Blood Cells—Signatures of Neurodegenerative Diseases and Aging. Int. J. Mol. Sci. 2022. Vol. 23. P. 227. https://doi.org/10.3390/ijms23010227
- Sergunova V.A., Chernyaev A.P. et al. Nanostructure of erythrocyte membranes in blood intoxication. A study using atomic force microscopy. Almanac of Clinical Medicine. 2016. Vol. 44. PP. 234–241. https://doi.org/10.18786/2072-0505-2016-44-2-234-241
- Kozlova E., Chernysh A. et al. Atomic force microscopy study of red blood cell membrane nanostructure during oxidation-reduction processes. J Mol Recognit. 2018. Vol. 31. No. 10. P. e2724. https://doi.org/10.1002/jmr.2724
- P.H.J. Wilding. Causes of obesity. Pract Diabetes Int. 2001. https://doi.org/10.1002/pdi.277
- Gaman A., Osiac E. et al. Surface morphology of leukemic cells from chronic myeloid leukemia under atomic force microscopy. Current health sciences journal. 2013. Vol. 39. No. 1. PP. 45–47.
- Alexandrova A., Antonova N., Skorkina M.Y. et al. Evaluation of the elastic properties and topography of leukocytes’ surface in patients with type 2 diabetes mellitus using atomic force microscope. Ser. Biomech. 2017. Vol. 31. PP. 16–24.
- AlSalhi S., Devanesan M. S. et al. Impact of Diabetes Mellitus on Human Erythrocytes: Atomic Force Microscopy and Spectral Investigations. Int. J. Environ. Res. Public Health. 2018. Vol. 15. P. 2368. https://doi.org/10.3390/ijerph15112368
- Loyola-Leyva A., Loyola-Rodríguez J.P. et al. Application of atomic force microscopy to assess erythrocytes morphology in early stages of diabetes. A pilot study. Micron. 2021. Vol. 141. P. 102982. https://doi.org/10.1016/j.micron.2020.102982
- Saira T. et al. Diagnosis of thalassemia and iron deficiency anemia using confocal and atomic force microscopy. Laser Phys. Lett. 2017. Vol. 14. P. 115703. https://doi.org/10.1088/1612-202X/aa8bca
- Wu Q., Liu J. et al. Mechanism of megaloblastic anemia combined with hemolysis. Bioengineered. 2021. Vol. 12. No. 1. PP. 6703–6712. https://doi.org/10.1080/21655979.2021.1952366
- Grechko A.V., Molchanov I.V., Sergunova V.A., Kozlova E.K., Chernysh A.M. Erythrocyte membrane defects in patients with impaired brain function (pilot study). General Reanimatology. 2019. Vol. 15. No. 6. PP. 11–20. https://doi.org/10.15360/1813-9779-2019-6-11-20
- Sales M.V., Tanabe E.L. et al. COVID-19 Infection Changes the Functions and Morphology of Erythrocytes: A Multidisciplinary Study. Journal of the Brazilian Chemical Society. 2023. Vol. 34. PP. 1185–1196. https://doi.org/10.21577/0103-5053.20230031
- Sovetnikov T.O., Akhmetova A.I. et al. Scanning probe microscopy in assessing blood cells roughness. Bio-Medical Engineering. 2023. https://doi.org/10.1007/s10527-023-10253-3
- Trukhova A.A., Akhmetova A.I., Yaminsky I.V. 3D visualization of erythrocytes by atomic force microscopy. NANOINDUSTRY. 2023. Vol. 16. No. 3–4. https://doi.org/10.22184/1993-8578.2023.16.3-4.180.184
- Shi H., Li A., Yin J. et al. AFM study of the cytoskeletal structures of malaria infected erythrocytes. IFMBE. 2009. Vol. 23. PP. 1965–68.
- Sinitsyna O.V., Akhmetova A.I., Yaminsky I.V. Atomic force microscopy of erythrocytes: new diagnostic possibilities. Medicine and High Technologies. 2022. Vol. 1. PP. 9–12. https://doi.org/10.34219/2306-3645-2022-12-1-9-12
Supplementary files
