Realization of the effect of low-temperature superplasticity in ultra-fine-grained Al–Zn–Mg alloy under multiaxial deformation conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The presented paper on optimal temperature-velocity deformation modes at lowered temperatures, using finite element method modeling and physical experiments, developed the technology for multiaxial deformation of nanostructured Al–Zn–Mg alloy.

Full Text

Restricted Access

About the authors

E. V. Bobruk

Ufa University of Science and Technology

Author for correspondence.
Email: e-bobruk@yandex.ru
ORCID iD: 0000-0001-8226-9887

Cand. of Sci. (Tech), Leading Researcher, Docent

Russian Federation, Ufa

M. E. Klimov

Ufa University of Science and Technology

Email: e-bobruk@yandex.ru
ORCID iD: 0009-0004-5741-9360

Student

Russian Federation, Ufa

References

  1. Елагин В. Легирование деформируемых алюминиевых сплавов переходными металлами. Москва, Металлургия, 1975.
  2. Polmear I.J. Light Alloys-Metallurgy of the Light Metals. Arnold, London, 1995.
  3. Li S.S., Yue X., Li Q.Y., Peng H.L., Dong B.X., Liu T.S., Jiang Q.C. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023. Vol. 27. PP. 944–983.
  4. Mondolfo L.F. Structure of the aluminium: magnesium: zinc alloys. Int. Metall. Re. v. 1971. Vol. 153. PP. 95–124.
  5. Кайбышев О.А. Сверхпластичность промышленных сплавов. Москва, Металлургия, 1984.
  6. Bhatta L., Pesin A., Zhilyaev A.P., Tandon P., Kong C., Yu H. Recent Development of Superplasticity in Aluminum Alloys: A Review. Metals. 2020. Vol. 10. P. 77.
  7. Zha o.Y., Zhu Y., Lavernia E.J. Strategies for improving tensile ductility of bulk nanostructured materials. Adv. Eng. Mater. 2010. Vol. 12. PP. 769–778.
  8. Song Z., Niu R.M., Cui X., Bobruk E.V., Murashkin M.Yu., Enikeev N.A., Gu Ji., Song M., Bhatia V., Ringer S.P., Valiev R.Z., Liao X. Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys. Acta Materialia. 2023. Vol. 246. Р. 118671.
  9. Chinh N.Q., Murashkin M.Yu., Bobruk E.V., Lábár J.L., Gubicza J., Kovács Z., Ahmed A.Q., Maier-Kiener V., Valiev R.Z. Ultralow-temperature superplasticity and its novel mechanism in ultrafine-grained Al alloys. Mater. Res. Lett. 2021. Vol. 9. No. 11. PР. 475–482.
  10. Bobruk E.V., Murashkin M.Yu., Kazykhanov V.U., Valiev R.Z. Superplastic behaviour at lower temperatures of high-strength ultrafine-grained Al alloy 7475. Advanced engineering materials. 2019. Vol. 21 (1). P. 1800094.
  11. Гречников Ф.В., Каргин В.Р. Теория пластического деформирования металлов: учебник. Самара, Изд-во Самарского университета, 2021.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Scheme of the HPТ, view of samples before and after HPТ

Download (586KB)
3. Fig.2. Microstructure of the Al–Zn–Mg alloy in the nanostructured state: bright field (a) and dark field (b), (green arrows indicate Zn segregations, red arrows indicate particles of the second phase MgZn2)

Download (932KB)
4. Fig.3. Stress-strain curves at different deformation temperatures

Download (532KB)
5. Fig.4. Effective plastic deformation under deformation conditions: 120 °C, 10–2 s–1 (a, d); 150 °C, 10–2 s–1 (b, d) 150 °C, 10–3 s–1 (c, f). Formation of the first crack (d, e, f)

Download (2MB)
6. Fig.5. Equivalent stresses under deformation conditions: at 120 °C and 10–2 s–1 (a, b); 150 °C and 10–3 s–1 (c, d). White arrows show the first crack

Download (3MB)
7. Fig.6. Equivalent stresses under deformation conditions; at temperature and speed conditions of 120 °С, 10–2 s–1 (a, b) and 150 °C, 10–3 s–1 (c, d); formation of the first crack (white arrow) (b, d)

Download (3MB)
8. Fig.7. Typical view of cross sections of nanostructured samples of Al-Zn-Mg alloy and their appearance after biaxial tensile testing at: 120 °С, 10–2 s–1 (а); 120 °С, 10–3 s–1 (b); 150 °С, 10–3 s–1 (c) and 150 °С, 10–2 s–1 (d)

Download (3MB)
9. Fig.8. Dependence of the maximum load Fmax (a) and the value of the true equivalent strain (b) on the temperature-speed conditions of biaxial tensile tests of nanostructured Al–Zn–Mg alloy samples

Download (366KB)

Copyright (c) 2025 Bobruk E.V., Klimov M.E.