Realization of the effect of low-temperature superplasticity in ultra-fine-grained Al–Zn–Mg alloy under multiaxial deformation conditions
- Authors: Bobruk E.V.1, Klimov M.E.1
-
Affiliations:
- Ufa University of Science and Technology
- Issue: Vol 18, No 5 (2025)
- Pages: 296–306
- Section: Nanomaterials
- URL: https://journals.eco-vector.com/1993-8578/article/view/688651
- DOI: https://doi.org/10.22184/1993-8578.2025.18.5.296.306
- ID: 688651
Cite item
Abstract
The presented paper on optimal temperature-velocity deformation modes at lowered temperatures, using finite element method modeling and physical experiments, developed the technology for multiaxial deformation of nanostructured Al–Zn–Mg alloy.
Full Text

About the authors
E. V. Bobruk
Ufa University of Science and Technology
Author for correspondence.
Email: e-bobruk@yandex.ru
ORCID iD: 0000-0001-8226-9887
Cand. of Sci. (Tech), Leading Researcher, Docent
Russian Federation, UfaM. E. Klimov
Ufa University of Science and Technology
Email: e-bobruk@yandex.ru
ORCID iD: 0009-0004-5741-9360
Student
Russian Federation, UfaReferences
- Елагин В. Легирование деформируемых алюминиевых сплавов переходными металлами. Москва, Металлургия, 1975.
- Polmear I.J. Light Alloys-Metallurgy of the Light Metals. Arnold, London, 1995.
- Li S.S., Yue X., Li Q.Y., Peng H.L., Dong B.X., Liu T.S., Jiang Q.C. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023. Vol. 27. PP. 944–983.
- Mondolfo L.F. Structure of the aluminium: magnesium: zinc alloys. Int. Metall. Re. v. 1971. Vol. 153. PP. 95–124.
- Кайбышев О.А. Сверхпластичность промышленных сплавов. Москва, Металлургия, 1984.
- Bhatta L., Pesin A., Zhilyaev A.P., Tandon P., Kong C., Yu H. Recent Development of Superplasticity in Aluminum Alloys: A Review. Metals. 2020. Vol. 10. P. 77.
- Zha o.Y., Zhu Y., Lavernia E.J. Strategies for improving tensile ductility of bulk nanostructured materials. Adv. Eng. Mater. 2010. Vol. 12. PP. 769–778.
- Song Z., Niu R.M., Cui X., Bobruk E.V., Murashkin M.Yu., Enikeev N.A., Gu Ji., Song M., Bhatia V., Ringer S.P., Valiev R.Z., Liao X. Mechanism of room-temperature superplasticity in ultrafine-grained Al–Zn alloys. Acta Materialia. 2023. Vol. 246. Р. 118671.
- Chinh N.Q., Murashkin M.Yu., Bobruk E.V., Lábár J.L., Gubicza J., Kovács Z., Ahmed A.Q., Maier-Kiener V., Valiev R.Z. Ultralow-temperature superplasticity and its novel mechanism in ultrafine-grained Al alloys. Mater. Res. Lett. 2021. Vol. 9. No. 11. PР. 475–482.
- Bobruk E.V., Murashkin M.Yu., Kazykhanov V.U., Valiev R.Z. Superplastic behaviour at lower temperatures of high-strength ultrafine-grained Al alloy 7475. Advanced engineering materials. 2019. Vol. 21 (1). P. 1800094.
- Гречников Ф.В., Каргин В.Р. Теория пластического деформирования металлов: учебник. Самара, Изд-во Самарского университета, 2021.
Supplementary files
Supplementary Files
Action
1.
JATS XML
Download (586KB)
3.
Fig.2. Microstructure of the Al–Zn–Mg alloy in the nanostructured state: bright field (a) and dark field (b), (green arrows indicate Zn segregations, red arrows indicate particles of the second phase MgZn2)
Download (932KB)
Download (532KB)
5.
Fig.4. Effective plastic deformation under deformation conditions: 120 °C, 10–2 s–1 (a, d); 150 °C, 10–2 s–1 (b, d) 150 °C, 10–3 s–1 (c, f). Formation of the first crack (d, e, f)
Download (2MB)
6.
Fig.5. Equivalent stresses under deformation conditions: at 120 °C and 10–2 s–1 (a, b); 150 °C and 10–3 s–1 (c, d). White arrows show the first crack
Download (3MB)
7.
Fig.6. Equivalent stresses under deformation conditions; at temperature and speed conditions of 120 °С, 10–2 s–1 (a, b) and 150 °C, 10–3 s–1 (c, d); formation of the first crack (white arrow) (b, d)
Download (3MB)
8.
Fig.7. Typical view of cross sections of nanostructured samples of Al-Zn-Mg alloy and their appearance after biaxial tensile testing at: 120 °С, 10–2 s–1 (а); 120 °С, 10–3 s–1 (b); 150 °С, 10–3 s–1 (c) and 150 °С, 10–2 s–1 (d)
Download (3MB)
9.
Fig.8. Dependence of the maximum load Fmax (a) and the value of the true equivalent strain (b) on the temperature-speed conditions of biaxial tensile tests of nanostructured Al–Zn–Mg alloy samples
Download (366KB)
