The effect of cavited water on physicochemical properties of horseradish peroxidase as studied at the level of single enzyme molecules. Change of enzyme properties under the influence of cavitation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effect of water subjected to cavitation on horseradish peroxidase (HRP) enzyme is studied using atomic force microscopy (AFM) and spectrophotometry (SP). By AFM, a significant change in the adsorption of HRP on freshly cleaved mica after keeping the enzyme solution in water subjected to cavitation, is found – as compared to the control enzyme sample. According to SP, the enzymatic activity of HRP does not change. The effect observed is useful to take into account when working with enzymes on industrial and research equipment, in which cavitation may occur in the flow of an aqueous medium.

Full Text

Restricted Access

About the authors

V. S. Ziborov

Institute of Biomedical Chemistry (IBMC); Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS)

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-7942-3337

Cand. of Sci. (Physics and Mathematics), Senior Researcher

Russian Federation, Moscow; Moscow

I. D. Shumov

Institute of Biomedical Chemistry (IBMC)

Author for correspondence.
Email: shum230988@yandex.ru
ORCID iD: 0000-0002-9795-7065

Cand. of Sci. (Biology), Researcher

Russian Federation, Moscow

E. E. Vazhenkova

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0009-0001-4224-8907

Laboratory assistant

Russian Federation, Moscow

A. N. Ableev

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0009-0004-3096-107X

Leading Engineer

Russian Federation, Moscow

A. F. Kozlov

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-2117-8743

Leading Engineer

Russian Federation, Moscow

A. V. Vinogradova

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0009-0001-6044-3490

Junior Researcher

Russian Federation, Moscow

E. D. Nevedrova

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0000-0003-2767-2299

Junior Researcher

Russian Federation, Moscow

O. N. Afonin

Institute of Biomedical Chemistry (IBMC)

Email: shum230988@yandex.ru
ORCID iD: 0009-0008-7947-3674

Cand. of Sci. (Tech), Senior Researcher

Russian Federation, Moscow

V. Yu. Tatur

Foundation of Perspective Technologies and Novations (FPTN)

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-6415-5189

Executive Director

Russian Federation, Moscow

A. A. Lukyanitsa

Foundation of Perspective Technologies and Novations (FPTN); Moscow State University

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-0517-0602

Doct. of Sci. (Tech), Leading Researcher

Russian Federation, Moscow; Moscow

A. V. Shcherbakov

LLC “Scientific and Production Association “KURS”

Email: shum230988@yandex.ru
ORCID iD: 0000-0002-8067-4624

Director General

Russian Federation, Moscow Region, Dolgoprudny

N. D. Ivanova

Moscow State Academy of Veterinary Medicine and Biotechnology Named after Skryabin

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-5942-8050

Lecturer

Russian Federation, Moscow

E. S. Yushkov

National Research Nuclear University MEPhI

Email: shum230988@yandex.ru
ORCID iD: 0009-0002-9161-0877

Cand. of Sci. (Tech), Prof.

Russian Federation, Moscow

D. V. Enikeev

Institute for Urology and Reproductive Health, Sechenov University

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-7169-2209

Doct. of Sci. (Medicine), Prof., Urologist surgeon

Russian Federation, Moscow

Yu. D. Ivanov

Institute of Biomedical Chemistry (IBMC); Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS)

Email: shum230988@yandex.ru
ORCID iD: 0000-0001-5041-1914

Doct. of Sci. (Biology), Prof., Head of Laboratory

Russian Federation, Moscow; Moscow

References

  1. Metzler D.E. Biochemistry, the Chemical Reactions of Living Cells, 1st ed.; Academic Press: Cambridge, UK, 1977.
  2. IAsys Cuvette System User’s Guide. First edition. Fisons plc., 1993.
  3. Androga D.D., Uyar B., Koku H., Eroglu I. Dynamic modeling of temperature change in outdoor operated tubular photobioreactors. Bioprocess Biosyst. Eng. 2017. Vol. 40 (7), PP. 1017–1031. http://dx.doi.org/10.1007/s00449-017-1765-3
  4. Ивченко В.М., Кулагин В.А. Немчин А.Ф. Кавитационная технология. Красноярск: Изд-во КГУ, 1990. 200 c.
  5. Дубровская О.Г., Евстигнеев В.В., Кулагин В.А. Проблемы очистки сточных вод, содержащих эмульгированные нефтепродукты в оборотных системах замкнутых циклов водопользования, и пути их решения. Журнал Сибирского Федерального Университета. Серия: Техника и технологии. 2013. № 6 (6), С. 680–688.
  6. Кулагин В.А., Сапожникова Е.С., Стебелева О.П., Кашкина Л.В., Чжэн Ч. Ин, Ли Ц., Ли Ф.Ч. Особенности влияния эффектов кавитации на физико-химические свойства воды и стоков. Журнал Сибирского федерального университета. Серия: Техника и технологии. 2014. № 7 (5). С. 605–614.
  7. Ivanov Y.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Romanova T.S.; Valueva A.A., Tatur V.Y., Stepanov I.N., Ziborov V.S. Investigation of the Influence of Liquid Motion in a Flow-based System on an Enzyme Aggregation State with an Atomic Force Microscopy Sensor: The Effect of Water Flow. Appl. Sci. 2020. Vol. 10 (13). P. 4560. https://doi.org/10.3390/app 10134560
  8. Ivanov Y.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Larionov D.I., Repnikov V.V., Ivanova N.D., Tatur V.Yu., Stepanov I.N., Ziborov V.S. AFM and FTIR Investigation of the Effect of Water Flow on Horseradish Peroxidase. Molecules. 2021. Vol. 26 (2). P. 306. https://doi.org/10.3390/molecules26020306
  9. Ziborov V.S., Pleshakova T.O., Shumov I.D., Kozlov A.F., Ivanova I.A., Valueva A.A., Tatur V.Y., Negodailov A.N., Lukyanitsa A.A., Ivanov Y.D. Investigation of the Influence of Liquid Motion in a Flow-Based System on an Enzyme Aggregation State with an Atomic Force Microscopy Sensor: The Effect of Glycerol Flow. Appl. Sci. 2020. Vol. 10 (14). P. 4825. https://doi.org/10.3390/app 10144825
  10. Ivanov Y.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Ivanova I.A., Ershova M.O., Tatur V.Yu., Ziborov V.S. AFM Study of the Influence of Glycerol Flow on Horseradish Peroxidase near the in/out Linear Sections of a Coil. Appl. Sci. 2021. Vol. 11 (4). P. 1723. https://doi.org/10.3390/app 11041723
  11. Ivanov Y.D., Shumov I.D., Kozlov A.F., Ershova M.O., Valueva A.A., Ivanova I.A., Tatur V.Y., Lukyanitsa A.A., Ivanova N.D., Ziborov V.S. Glycerol Flow through a Shielded Coil Induces Aggregation and Activity Enhancement of Horseradish Peroxidase. Appl. Sci. 2023. Vol. 13. P. 7516. https://doi.org/10.3390/app 13137516
  12. Ivanov Y.D., Shumov I.D., Kozlov A.F., Ershova M.O., Valueva A.A., Ivanova I.A., Tatur V.Y., Lukyanitsa A.A., Ivanova N.D., Ziborov V.S. Stopped Flow of Glycerol Induces the Enhancement of Adsorption and Aggregation of HRP on Mica. Micromachines. 2023. Vol. 14. P. 1024. https://doi.org/10.3390/mi14051024
  13. Ivanov Y.D., Shumov I.D., Kozlov A.F., Valueva A.A., Ershova M.O., Ivanova I.A., Ableev A.N., Tatur V.Y., Lukyanitsa A.A., Ivanova N.D., Ziborov V.S. Atomic Force Microscopy Study of the Long-Term Effect of the Glycerol Flow, Stopped in a Coiled Heat Exchanger, on Horseradish Peroxidase. Micromachines. 2024. Vol. 15 (4). P. 499. https://doi.org/10.3390/mi15040499
  14. Иванов Ю.Д., Шумов И.Д., Козлов А.Ф., Ершова М.О., Валуева А.А., Иванова И.А., Татур В.Ю., Лукьяница А.А., Иванова Н.Д., Неведрова Е.Д., Зиборов В.С. АСМ-исследование пост-эффекта движения глицерина в выходной части проточной системы на адсорбционные свойства белка. НАНОИНДУСТРИЯ. 2023. Т. 16. № 2. С. 106–113. https://doi.org/10.22184/1993-8578.2023.16.2.106.113
  15. Ivanov Y.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Ivanova I.A., Valueva A.A., Tatur V.Y., Smelov M.V., Ivanova N.D., Ziborov V.S. AFM imaging of protein aggregation in studying the impact of knotted electromagnetic field on a peroxidase. Sci. Rep. 2020. Vol. 10. P. 9022. https://doi.org/10.1038/s41598-020-65888-z
  16. Ziborov V.S., Pleshakova T.O., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Larionov D.I., Evdokimov A.N., Tatur V.Y., Aleshko A.I., Sakharov K.Y., Dolgoborodov A.Y., Fortov V.E., Archakov A.I., Ivanov Y.D. The Impact of Fast-Rise-Time Electromagnetic Field and Pressure on the Aggregation of Peroxidase upon Its Adsorption onto Mica. Appl. Sci. 2021. Vol. 11 (24). P. 11677. https://doi.org/10.3390/app 112411677
  17. Ivanov Yu.D., Pleshakova T.O., Shumov I.D., Kozlov A.F., Ivanova I.A., Valueva A.A., Ershova M.O., Tatur V.Yu., Stepanov I.N., Repnikov V.V., Ziborov V.S. AFM study of changes in properties of horseradish peroxidase after incubation of its solution near a pyramidal structure. Sci. Rep. 2021. Vol. 11 (1). P. 9907. https://doi.org/10.1038/s41598-021-89377-z
  18. Ivanov Y.D., Tatur V.Y., Pleshakova T.O., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Repnikov V.V., Stepanov I.N., Ziborov V.S. Effect of Spherical Elements of Biosensors and Bioreactors on the Physicochemical Properties of a Peroxidase Protein. Polymers. 2021. Vol. 13 (10). P. 1601. https://doi.org/10.3390/polym13101601
  19. Ivanov Y.D., Tatur V.Y., Pleshakova T.O., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. The Effect of Incubation near an Inversely Oriented Square Pyramidal Structure on Adsorption Properties of Horseradish Peroxidase. Appl. Sci. 2022. Vol. 12. P. 4042. https://doi.org/10.3390/app 12084042
  20. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. The Effect of a Dodecahedron-Shaped Structure on the Properties of an Enzyme. J. Funct. Biomater. 2022. Vol. 13. P. 166. https://doi.org/10.3390/jfb13040166.
  21. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. Atomic Force Microscopy Study of the Effect of an Electric Field, Applied to a Pyramidal Structure, on Enzyme Biomolecules. J. Funct. Biomater. 2022. Vol. 13. P. 234. https://doi.org/10.3390/jfb13040234
  22. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. The Influence of a High-Voltage Discharge in a Helicoidal Twisted-Pair Structure on Enzyme Adsorption. Electronics. 2022. Vol. 11. P. 3276. https://doi.org/10.3390/electronics11203276
  23. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. The Effect of a Rotating Cone on Horseradish Peroxidase Aggregation on Mica Revealed by Atomic Force Microscopy. Micromachines 2022. Vol. 13. P. 1947. https://doi.org/10.3390/mi13111947
  24. Ivanov Y.D., Shumov I.D., Tatur V.Y., Valueva A.A., Kozlov A.F., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. AFM Investigation of the Influence of Steam Flow through a Conical Coil Heat Exchanger on Enzyme Properties. Micromachines. 2022. Vol. 13. P. 2041. https://doi.org/10.3390/mi13122041
  25. Ivanov Y.D., Tatur V.Y., Shumov I.D., Kozlov A.F., Valueva A.A., Ivanova I.A., Ershova M.O., Ivanova N.D., Stepanov I.N., Lukyanitsa A.A., Ziborov V.S. Effect of a Conical Cellulose Structure on Horseradish Peroxidase Biomacromolecules. Appl. Sci. 2022. Vol. 12. P. 11994. https://doi.org/10.3390/app 122311994
  26. Kiselyova O.I., Yaminsky I., Ivanov Y.D., Kanaeva I.P., Kuznetsov V.Y., Archakov A.I. AFM study of membrane proteins, cytochrome P 4502B4, and NADPH–Cytochrome P 450 reductase and their complex formation. Arch. Biochem. Biophys. 1999. Vol. 371. P.P. 1–7. https://doi.org/10.1006/abbi.1999.1412.
  27. Pleshakova T.O., Kaysheva A.L., Shumov I.D., Ziborov V.S., Bayzyanova J.M., Konev V.A., Uchaikin V.F., Archakov A.I., Ivanov Y.D. Detection of hepatitis C virus core protein in serum using aptamer-functionalized AFM chips. Micromachines. 2019. Vol. 10. P. 129. https://doi.org/10.3390/mi10020129
  28. Sanders S.A., Bray R.C., Smith A.T. pH-dependent properties of a mutant horseradish peroxidase isoenzyme C in which Arg38 has been replaced with lysine, Eur J Biochem. 1994. Vol. 224. PP. 1029–1037. https://doi.org/10.1111/j.1432-1033.1994.01029.x
  29. Ivanov Y.D., Danichev V.V., Pleshakova T.O., Shumov I.D., Ziborov V.S., Krokhin N.V., Zagumenniy M.N., Ustinov V.S., Smirnov L.P., Shironin A.V., Archakov A.I. Irreversible chemical AFM-based fishing for detection of low-copied proteins. Biochem. (Moscow) Suppl. Ser. B: Biomed. Chem. 2013. Vol. 7. PP. 46–61. https://doi.org/10.1134/S1990750813010071
  30. Pershin S.M. Conversion of Ortho-Para-H2O Isomers in Water and a Jump in Erythrocyte Fluidity through a Microcapillary at a Temperature of 36.6 ±0.3 °C. Phys. Wave Phenom. 2009. Vol. 17 (4), PP. 241–250.
  31. Першин С.М. Двухкомпонентная вода. СПб: Агентство "Информатика". С. 71.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Photographic image of the (hydrodynamic generator)-based setup used for obtaining cavitational water

Download (405KB)
3. Fig.2. Schematic representation of the experiment on the incubation of HRP solution to study effect and post-effect of interaction of cavitational water on the enzyme. The tube with the control sample of HRP solution not shown

Download (35KB)
4. Fig.3. Typical AFM images of the surface of freshly cleaved mica substrates incubated in the studied samples of HRP solution. The sample was kept for 3 hours in a beaker with cavitational water (a), at the same place as the beaker with cavitational water (b), or 10 m away from the beaker with cavitational water (c, control sample). Experimental conditions: 10–7 M HRP in 2 mM PBS-D, pH 7.4, temperature 23 °C, incubation time 3 hours. The size of each scan is 2×2 μm

Download (160KB)
5. Fig.4. Histograms of the absolute number of visualized objects (normalized to an area of 400 μm2) depending on the heights of objects N400(h), obtained for the studied samples of the HRP solution. The samples were kept for 3 hours in a beaker with cavitational water (red columns), at the place of the glass with cavitational water (green columns) or 10 m from the glass with cavitational water (blue columns). Experimental conditions: 10–7 M HRP in 2 mM PBS-D, pH 7.4, Т = 23 °C, incubation time 3 hours

Download (48KB)
6. Fig.5. Dependences of absorption at 405 nm on time A405(t), obtained for the studied samples of the HRP solution. The sample was kept for 3 hours in a glass with cavitation water (red curve), at the place of the glass with cavitation water (green curve) or 10 m from the glass with cavitation water (blue curve). Experimental conditions: the concentration of HRP in the SP cell was 10–9 M, pH 5.0, Т = 23 °C, the optical path length of the SP cell was 1 cm

Download (46KB)

Copyright (c) 2025 Ziborov V.S., Shumov I.D., Vazhenkova E.E., Ableev A.N., Kozlov A.F., Vinogradova A.V., Nevedrova E.D., Afonin O.N., Tatur V.Y., Lukyanitsa A.A., Shcherbakov A.V., Ivanova N.D., Yushkov E.S., Enikeev D.V., Ivanov Y.D.