Development of LLS-simulator of the VSJM communication network based on 802.11ax technology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The speed of trains movement on high-speed railway lines does not allow to use classical wireless railway communication networks, it is necessary to design, model and implement new generation communication systems. One of the optimal solutions in this area is the development of railway wireless communication networks based on the use of radioEthernet technology as part of networks such as Trackside Network. The paper describes LLS (link-level simulator) software model development and implementation of the railway wireless communication network based on the radioEthernet 802.11ax technology.

Full Text

Restricted Access

About the authors

S. L. Portnoy

Московский институт электроники и математики им. А.Н. Тихонова; НИУ Высшая школа экономики; ООО "РадиоГигабит"

Author for correspondence.
Email: sportnoy@hse.ru

доктор технических наук, профессор, научный консультант

 

Russian Federation

S. E. Nikitin

НИУ Высшая школа экономики; ООО "РадиоГигабит"

Email: snikitin@hse.ru

ст. преподаватель, младший инженер-исследователь МИЭМ

Russian Federation

N. S. Klyuev

НИУ Высшая школа экономики; ООО "РадиоГигабит"

Email: nsklyuev@edu.hse.ru

студент ВШЭ, стажер

Russian Federation

G. D. Antoshkin

НИУ Высшая школа экономики; ООО "РадиоГигабит"

Email: gdantoshkin@edu.hse.ru

студент ВШЭ, стажер

Russian Federation

Sh. R. Sakhautdinov

НИУ Высшая школа экономики; ООО "РадиоГигабит"

Email: shrsakhautdinov@edu.hse.ru

студент ВШЭ, стажер

Russian Federation

References

  1. Farooq J., Soler J. Radio communication for communications-based train control (CBTC): A tutorial and survey // IEEE Commun. Surveys Tut. 2017. Vol. 19. No. 3. PP. 1377–1402.
  2. Portnoy S., Nikitin S., Minkovsky M., Klyuev N., Sakhautdinov S. Modelling approach to convergence trackside railway networks [Электронный ресурс]. URL: https://ieeexplore.ieee.org/document/10617461 (дата обращения: 27.08.2024).
  3. IEEE Standard for Information Technology Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks−Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 1: Enhancements for High-Efficiency WLAN (Amendment to IEEE Std 802.11-2020). 2021.
  4. Портной С.Л., Никитин С.Е., Волошин А.Д., Антошкин Г.Д. Обзор современных методов реализации помехоустойчивого кодирования в мобильной связи // ПЕРВАЯ МИЛЯ. 2024. № 1. С. 26–40.
  5. PP TS 138 101-4. User Equipment (UE) radio transmission and reception. Part 4: Performance requirements. 2021.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Structure of the HE MU PPDU data transmission packet

Download (53KB)
3. Fig.2. Example of generation of training and information fields

Download (130KB)
4. Fig.3. 802.11ax LLS block diagram

Download (607KB)
5. Fig.4. Signal constellation after modulation, noise and frequency shift introduction and equalization, QAM64

Download (331KB)
6. Fig. 5. Assumptions of the HST-SFN model [5]

Download (128KB)
7. Fig.6. LDPC FEC + BPSK/QPSK/QAM in a channel with AWGN

Download (235KB)
8. Fig.7. BCC FEC + BPSK/QPSK/QAM in a channel with AWGN, soft decoding

Download (191KB)
9. Fig.8. BCC FEC + BPSK/QPSK/QAM in a channel with AWGN, hard decoding

Download (182KB)
10. Fig.9. LDPC+constellation+OFDM in a channel with frequency shift, QAM16 and QAM64, coding rates 3/4 and 2/3

Download (175KB)
11. Fig.10. BCC +constellation+OFDM in a channel with frequency shift, QAM16 and QAM64, coding rates 3/4 and 2/3

Download (172KB)

Copyright (c) 2024 Portnoy S.L., Nikitin S.E., Klyuev N.S., Antoshkin G.D., Sakhautdinov S.R.