New class of codes with error localization and its noise immunity: the basic idea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The possibility of rethinking the established code constructions is considered. The new modification of traditional cascade and generalized cascade codes is offered, that in turn creates essentially new family of codes and opens prospects for development of new decoding algorithms. Three examples of development of codes with error localization and results of their modelling are resulted. Directions of the further researches of new classes of codes are described.

Full Text

Restricted Access

About the authors

V. V. Zyablov

ИППИ РАН им А.А. Харкевича

Author for correspondence.
Email: zyablov@iitp.ru

д.т.н., главный научный сотрудник

Russian Federation

S. L. Portnoy

НИУ ВШЭ

Email: sportnoy@hse.ru

д.т.н., проф. Московского института электроники и математики им. А. Н.Тихонова

Russian Federation

S. E. Nikitin

МИЭМ НИУ ВШЭ

Email: snikitin@hse.ru

ст. преподаватель

Russian Federation

A. D. Voloshin

МИЭМ НИУ ВШЭ

Email: advoloshin@edu.hse.ru

магистрант

Russian Federation

N. S. Klyuev

МИЭМ НИУ ВШЭ

Email: nsklyuev@edu.hse.ru

магистрант

Russian Federation

References

  1. Shannon C.E. A mathematical theory of communication // The Bell System Technical Journal. 1948. Vol. 27. No. 3. PP. 379–423.
  2. Hamming R.W. Error detecting and error correcting codes // The Bell System Technical Journal. 1950. Vol. 29. No. 2. PP. 147–160.
  3. Elias P. Error-free Coding // Transactions of the IRE Professional Group on Information Theory. 1954. Vol. 4. No. 4. PP. 29–37.
  4. Berrou C. et al. Near Shannon limit error-correcting coding and decoding: Turbo-codes // Proceedings of IEEE International Conference on Communications, Geneva, Switzerland. 1993. Vol. 2. PP. 1064–1070.
  5. Галлагер Р. Теория информации и надежная связь. М.: Советское радио, 1974. 720 c.
  6. Gallager R. Low-density parity-check codes // IRE Transactions on Information Theory. 1962. Vol. 8. No. 1. PP. 21–28.
  7. Форни Д. Каскадные коды. М.: Наука, 1970. 207 c.
  8. Блох Э., Зяблов В. Обобщение каскадных кодов. М.: Связь, 1976. 240 c.
  9. Гинзбург В.В. Многомерные сигналы для непрерывного канала // Проблемы передачи информации. 1984. Т. 20. № 1. С. 28–46.
  10. Ungerboeck G. Trellis-coded modulation with redundant signal sets. Part I: introduction // IEEE Communications Magazine. 1987. Vol. 25. No. 2. PP. 5–11.
  11. Зяблов В.В. и др. Высокоскоростная передача сообщений в реальных каналах. М.: Радио и связь, 1991. 287 c.
  12. Arıkan E. Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memoryless channels // IEEE Transactions on Information Theory. 2009. Vol. 55. No. 7. PP. 3051–3073.
  13. PP TS 38.212. Multiplexing and channel coding (Release 18). 2023.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of the code encoding process

Download (1MB)
3. Fig.2. Comparison of the bit error probability from the signal-to-noise ratio (SNR) for the proposed decoding algorithm (32,16,8) and decoding by MP for (32, 15, 8)

Download (928KB)
4. Fig. 3. Comparison of the bit error probability from the SNR for error localization codes with external Reed-Solomon codes of length 4

Download (1MB)
5. Fig.4. Comparison of the probability of error per block from the SNR for error localization codes and polar codes 5G NR

Download (1MB)

Copyright (c) 2025 Zyablov V.V., Portnoy S.L., Nikitin S.E., Voloshin A.D., Klyuev N.S.