ADAPTED ALGORITHM OF IMAGE SEGMENTATION

Abstract


An approach to image segmentation based on Markov random field with using of adapted local area is supported in this article. The choice of local area using source image based on mutual information criterion. The results of carried experiments prove the work efficiency of supported approach.

About the authors

V E Gai

A L Zhiznyakov

References

  1. Geraan S., Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images // IEEE Transactions on PAMI. Vol. 6, 1984.-P. 721-741.
  2. Besag J. Spatial interaction and the statistical analysis of lattice systems // Journal of Royal society. Vol. 26, 1974. - P. 192-236.
  3. Hassner M., Sklansky J. The use of markov random fields as models of texture // Computer graphics and Image Processing. Vol. 12, 1980. -P. 357-370.
  4. S. Li Markov random field modeling in computer vision. New-York: Springer-Verlag, 1995.-560 p.
  5. Kato Z., Berthod M., Zerubia J. A hierarchical markov random field and multitemperature annealing for parallel image classification // Graphical models and image processing. Vol. 58, 1996.-P. 18-37.
  6. Besag J. On the statistical analysis of dirty pictures // Journal of Royal Statistical Society. Vol. B-68, 1996.-P. 256-302.
  7. Kato Z., Zerubia J., Berthod M. Satellite image classification using a modified Metropolis Dynamics // IEEE Transactions on Image Processing. Vol. 12, 2003. - P. 540-552.
  8. Zerubia J., Chellappa R. Mean field approximation using compound gauss-markov random field for edge detection and image classification // IEEE Transactions on Neural Networks. Vol. 8, 1993. - P. 703-709.
  9. Blake A. Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction // IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, 1989.-P. 2-12.
  10. Sziranyi Т., Zerubia J., Czuni L., GeldreichG., Kato Z. Image segmentation using markov random field in fully parallel cellular network architectures // Real-Time Imaging. Vol. 6, 2000.-P. 196-211.
  11. Liu J., Moulin P. Information-Theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients // IEEE Transaction on image processing. 2001. vol. 10.-P. 1647-1658.
  12. Гай В.Е., Жизняков А.Л. Использование критерия взаимной информации в локальных алгоритмах обработки вейвлет - коэффициентов // ИКТ Т. 5, № 1, 2007. - С. 12-17.
  13. Cavallaro A., Gelasia E., Ebrahimi T. Objective evaluation of segmentation quality using spatio-temporal context // IEEE ICIP 2002. Vol. 3.-P. 301-304.

Statistics

Views

Abstract - 23

PDF (Russian) - 6

Cited-By


Article Metrics

Metrics Loading ...

Copyright (c) 2008 Gai V.E., Zhiznyakov A.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies