VOZMOZhNOSTI SOVREMENNOY KhIMIOTERAPII VYSOKODIFFERENTsIROVANNOGO RAKA ShchITOVIDNOY ZhELEZY


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

High differentiated types of thyroid carcinoma (HDTC) constitute more than 90 % of cases. In 10-15 % of patients, distant metastases can be detected that extremely worse the prognosis. Radioactive iodine therapy remains the basis for this group of patients. This treatment provides good results, but only if the tumor cells have the ability to accumulate the radioactive iodine. For patients with radioiodi-nerefractory HDTC, prognosis remains very unfavorable. Standard cytotoxic chemotherapy is applicable with extremely discouraging results. Over the past years, the development of molecular biology has led to the discovery of the numerous targets in thyroid carcinoma. These targets include protooncogens BRAF and RET, VEGFR and PDGFR, associated with angiogenesis, and sodium-iodide symporter. Tyrosine kinase inhibitors are the most studied drugs in the clinical settings; the results of their evaluation allowed to introduce new targeted drugs in the treatment in this group of patients.

Full Text

Restricted Access

About the authors

I. S Romanov

Email: drromanov@mail.ru

References

  1. Давыдов М.И., Аксель Е.М. Статистика злокачественных новообразований в России и странах СНГ в 2008 году. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2010; 21 (2): 160. Прил. 1.
  2. Румянцев П.О., Ильин А.А., Румянцева У.В., Саенко В.А. Рак щитовидной железы. Современные подходы к диагностике и лечению. М., 2009.
  3. O'Neill C.J., Oucharek J., Learoud D., Sidhu S.B. Standard and emerging therapies for metastatic differentiated thyroid cancer. Oncologist. 2010: 15(2): 146-56.
  4. Sherman S.I. Thyroid carcinoma. Lancet. 2003; 361: 501-11.
  5. Cooper D.S., Doherty G.M., Haugen B.R., et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009; 19( 11): 1167-214.
  6. Perros P., et al. British Thyroid Association Royal College of Physicians; Report of the Thyroid Cancer Guidelines Update Group. Guidelines for the Management of Thyroid Cancer. Second Edition. London: London Royal College of Physicians; 2007. Р. 1-92.
  7. Mazzaferri E.L., Jhiang S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 1994; 97(5): 418-28.
  8. Eustatia-Rutten C.F., Corssmit E.P., Biermasz N.R., et al. Survival and death causes in differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 2006; 91: 313-19.
  9. Hoie J., Stenwig A.E., Kullmann G., Lindegaard M. Distant metastases in papillary thyroid cancer: a review of 91 patients. Cancer. 1988; 61: 1-6.
  10. Durante C., Haddy N., Baudin E., Leboulleux S., et al. J. Clin. Endocrinol. Metab. 2006; 91(8): 2892-99.
  11. Pittas A.G., Adler M., Fazzari M., et al. Bone metastases from thyroid carcinoma: clinical characteristics and prognostic variables in one hundred forty-six patients. Thyroid. 2000; 10: 261-68.
  12. Jonklaas J., Sarlis N.J., Litofsky D., et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006; 16(12): 1229-42.
  13. Casara D., Rubello D., Saladini G., et al. Different features of pulmonary metastases in differentiated thyroid cancer: Natural history and multivariate statistical analysis of prognostic variables. J. Nucl. Med. 1993; 34: 1626-31.
  14. Hodak S.P., Carty S.E. Radioiodineresistant differentiated thyroid cancer: hope for the future. Oncology. 2009; 9: 775-76.
  15. Gottlieb J.A., Hill C.S. Jr. Chemotherapy of thyroid cancer with adriamycin. Experience with 30 patients. N. Engl. J. Med. 1974; 290(4): 193-97.
  16. Shimaoka K., Schoenfeld D.A., DeWys W.D., et al. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985; 56: 2155-60.
  17. Williams S.D., Birch R., Einhorn L.H. Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: A Southeastern Cancer Study Group trial. Cancer. Treat. Rep. 1986; 70: 405-07.
  18. Sherman S.I. Early clinical studies of novel therapies for thyroid cancers. Endocrinol. Metab. Clin. North. Am. 2008; 37: 511-24.
  19. Nikiforova M.N., Nikiforov Y.E. Molecular genetics of thyroid cancer: Implications for diagnosis, treatment and prognosis. Expert Rev. Mol. Diagn. 2008; 8: 83-95.
  20. Xing M. BRAF mutation in papillary thyroid cancer: Pathogenic role, molecular bases, and clinical implications. Endocr. Rev. 2007; 28: 742-62.
  21. Knauf J.A., Fagin J.A. Role of MAPK pathway oncoproteins in thyroid cancer pathogenesis and as drug targets. Curr. Opin. Cell. Biol. 2009; 21: 296-303.
  22. Elisei R., Ugolini C., Viola D., et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: A 15-year median follow-up study. J. Clin. Endocrinol. Metab. 2008; 93: 3943-49.
  23. Xing M., Westra W.H., Tufano R.P., et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2005; 90: 6373-79.
  24. Riesco-Eizaguirre G., Gutierrez-Martinez P., Garcia-Cabezas M.A., et al. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr. Relat. Cancer. 2006; 13: 257-69.
  25. Durante C., Puxeddu E., Ferretti E., et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J. Clin. Endocrinol. Metab. 2007; 92: 2840-43.
  26. Romei C., Ciampi R., Faviana P., et al. BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr. Relat. Cancer. 2008; 15: 511-20.
  27. Liu Z., Hou P., Ji M., et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J. Clin. Endocrinol. Metab. 2008; 93: 3106-16.
  28. Santarpia L., El-Naggar A.K., Cote G.J., et al. Phosphatidylinositol 3-kinase/Akt and Ras/Raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 2008; 93: 278-84.
  29. Sherman S.I., Wirth L.J., Droz J.P., et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N. Engl. J. Med. 2008; 359: 31-42.
  30. Pennell N.A., Daniels G.H., Haddad R.I., et al. A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid. 2008; 18: 317-23.
  31. Cohen E.E., Rosen L.S., Vokes E.E., et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: Results from a phase II study. J. Clin. Oncol. 2008; 26: 4708-13.
  32. Gupta-Abramson V., Troxel A.B., Nellore A., et al. Phase II trial of sorafenib in advanced thyroid cancer. J. Clin. Oncol. 2008; 26: 4714-19.
  33. Kloos R.T., Ringel M.D., Knopp M.V., et al. Phase II trial of sorafenib in metastatic thyroid cancer. J. Clin. Oncol. 2009; 27: 1675-84.
  34. Hoftijzer H.C., Heemstra K.A., Morreau H., et al. Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur. J. Endocrinol. 2009; 161(6): 923-31.
  35. Castellone M.D., Carlomagno F., Salvatore G., et al. Receptor tyrosine kinase inhibitors in thyroid cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2008; 22: 1023-38.
  36. Polverino A., Coxon A., Starnes C., et al. AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and Kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer. Res. 2006; 66: 8715-21.
  37. Castellone M.D., Carlomagno F., Salvatore G., et al. Receptor tyrosine kinase inhibitors in thyroid cancer. Best Pract Res Clin. Endocrinol. Metab. 2008; 22: 1023-38.
  38. Stommel J.M., Kimmelman A.C., Ying H., et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007; 318: 287-90.
  39. Brose M.S., Nutting C.M., Sherman S.I., et al. Rationale and design of DECISION: a doubleblind, randomized, placebo-controlled phase III trial evaluating the efficacy and safety of sorafenib in patients with locally advanced or metastatic radioactive iodine (RAI)-refractory, differentiated thyroid cancer. BMC Cancer. 2011; 11: 349 http://www.biomedcentral.com/1471-2407/11/349
  40. Brose M.S., Nutting C.M., Jarzab B., et al. Sorafenib in locally advanced or metastatic patients with radioactive iodine-refractory differentiated thyroid cancer: The phase III DECISION trial. Presented at ASCO 2013. J. Clin. Oncol. 2013; 31(suppl): Abstract 4.
  41. Lopez J.P., Wang-Rodriguez J., Chang C.Y., et al. Gefitinib (Iressa) potentiates the effect of ionizing radiation in thyroid cancer cell lines. Laryngoscope. 2008; 118: 1372-76.
  42. Lopez J.P., Wang-Rodriguez J., Chang C., et al. Gefitinib inhibition of drug resistance to doxorubicin by inactivating ABCG2 in thyroid cancer cell lines. Arch. Otolaryngol. Head. Neck. Surg. 2007; 133: 1022-27.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies