Levodopa-indutsirovannye diskinezii pri bolezni Parkinsona:patogenez, klinika, podkhody k lecheniyu


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Correction of levodopa-induced dyskinesias (LID) in the treatment of Parkinson's disease is a fairly complex clinical problem, which involves a variety of approaches to a solution. Based on data from clinical trials, article analyzes the experience of LID correction. As a rule, dyskinesia appears on stage of clinical manifestations and often coincides with the moment of increasing doses of levodopa. Reducing the dose of levodopa, however, is not always possible because patients prefer to have soft dyskinesia instead of reduction of locomotor activity. Increased severity or duration of involuntary movements significantly affects the quality of life of patients. It is important to identify the presence of hyperkinesias in patients and assign antidyskinetic drugs as early as possible.

Full Text

Restricted Access

About the authors

E. A Katunina

N. V Titova

References

  1. Cotzias G.C., Van Woert, Schiffer L.M., Aromatic amino acid and vodification of parkinsonism. N. Engl. J. Med. 1967; 267: 347-79.
  2. Parkinson's Study Group. Impact of deprenyl and tocopherol treatment on Parkinson's disease in DATATOP patients requiring levodopa. Parkinson Study Group. Ann. Neurol. 1996; 39: 37-45.
  3. Van Gerpen J.A., Kumar N., Bower J.H., et al. Levodopa-associated dyskinesia risk among Parkinson diseasepatients in Olmsted Country, Minnesota, 1976-1990. Arch. Neurol. 2006; 63: 205-9.
  4. Wolters E., Baumann C. Parkinson Disease and other Movement Disorders. University Press, 2014. P. 255-70.
  5. Olanow C.W., Kieburtz K., Raskol O., et al. Factors predictive of development of Levodopa-induced dyskinesia and wearing-off in Parkinson's Disease. Mov. Disord. 2013; 28: 1064-71.
  6. Kumar N., Van Gerpen J.A., Bower J.H., et al. Levodopa-dyskinesia incidence by age of Parkinson's disease onset. Mov. Disord. 2005; 20: 342-44.
  7. Stocchi F., Rascol O., Kieburtz K., et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010; 68: 18-27.
  8. Rajput A.H. Factors predictive of the development of levodopa-induced dyskinesia and wearing-off in Parkinson's disease. Mov. Disorders.2014; 29(3): 429.
  9. Paill V., Brachet P., Damier P. Role of nigral lesion in the genesis of dyskinesias in a rat model of Parkinson's disease. Neuroreport. 2004; 15(3): 561-64.
  10. Rascol O., Payoux P., Ory F., et al. Limitations of current Parkinson's Disease therapy. Ann Neurol. 2003; 53: 3-15.
  11. de la Fuente-Fernandez R. Drug-induced motor complications in dopa-responsive dystonia: implications for the pathogenesis of dyskinesias and motor fluctuations. Clin. Neuropharmacol. 1999; 22(4): 216-19.
  12. Guridi J., Gonzalez-Redondo R., Obeso J.A. Clinical features, pathophisiology and treatment of levodopa-induced Dyskinesias in Parkinson's Disease. Hindawi Publishing Corporation Parkinson's Disease, 2012. P. 15-30.
  13. Mitchell I., Boyce S., Sambrook M.A., Crossman A.R. A2-deoxyglucose study of the effects of dopamine agonists on the Parkinsonian primate brain. Implications for the neural mechanisms that mediate dopamine agonist-induced dyskinesia. Brain.1992; 115: 809-24.
  14. Berthet A., Bezard E., Porras G., et al. L-DOPA impairs proteasome activity in parkinsonism through D1 dopaminereceptor. J. Neurosci. 2012; 32(2): 681-91.
  15. Iravani M.M., McCreary A.C., Jenner P. Striatal plasticity in Parkinson's disease and L-DOPA induced dyskinesia. Parkinsonismand Related Disorders. 2012; 181(1): 123-25.
  16. Jenner P. Настоящие и будущие стратегии лечения болезни Паркинсона. Материалы II Национального конгресса по болезни Паркинсона и расстройствам движений. 2011/C. 171-5.
  17. Berthet A., Bezard E. Dopamine receptors and L-dopa-induced dyskinesia. Parkinsonism Related Disorders. 2010; 15(4): 8-12.
  18. B'ezard E., Ferry S., Mach U., et al. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nature Medicine. 2003; 9(6): 762-67.
  19. Fiorentini C., Busi C., Gorruso E., Gotti C., Spano P., Missale C. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Molecular Pharmacology. 2008; 74(1): 59-69.
  20. Fernagut, P.O., et al. Dopamine transporter binding is unaffected by L-DOPA administration in normal and MPTP-treated monkeys. PLoS One. 2010; 5(11): e14053.
  21. Guigoni C., et al. Levodopa-induced dyskinesia in MPTP-treated macaques is not dependent on the extent and pattern of nigrostrial lesioning. Eur. J. Neurosci. 2005; 22: 283-87.
  22. Marti M., Trapella, C., Viaro, R., Morari, M. The nociceptin/orphanin FQreceptor antagonist J-113397 and L-DOPA additively attenuate experimental parkinsonism through overinhibition of the nigrothalamic pathway. J. Neurosci. 2007; 27: 1297-307.
  23. Stefani A., et al. The clinical efficacy of L-DOPA and STN-DBS share a common marker: reduced GABA content in the motor thalamus. Cell Death Dis. 2011; 2: e154.
  24. Revenscroft P., Brotchie J. NMDA receptors in basal ganglia. J Anat. 2000; 196: 577-85.
  25. Surmeier D.J., Ding J., Day M., Wang Z., Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007; 30: 228-35.
  26. Kotecha S.A., Oak J.N., Jackson M.F., Perez Y., Orser B.A., Van Tol H.H. et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron. 2002; 35: 1111-22.
  27. Ahmed I., Bose S.K., et al. Glutamate NMDA receptor dysregulation in Parkinson's disease with dyskinesias. Brain. 2011; 134: 979-86.
  28. Bamford N.S., Robinson S., Palmiter R.D., Joyce J.A., Moore C., Meshul C.K. Dopamine modulates release from corticostriatal terminals. J Neurosci. 2004; 24: 9541-52.
  29. Castrn E., Hen R. Neuronal plasticity and antidepressant actions. Trends Neurosci. 2013; 36(5): 259-67.
  30. Finlay C.J., Duty S., Vernon C. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies. 2014. www.frontiersin.org
  31. Cerasa A., Morelli M., Augimeri A., Salsone M., Novellino F., Gioia M.C., et al. Prefrontal thickeningin PD with levodopa-induced dyskinesias: new evidence from cortical thickness measurement. Parkinsonism Relat Disord. 2013; 19: 123-25.
  32. Salgado-Pineda P., Delaveau P., Falcon C., Blin O. Brain T1 intensity changes after levodopa administrationin healthy subjects: a voxelbased morphometry study. Br J Clin Pharmacol. 2006; 62: 546-51.
  33. Rascol O., Sabatini U., Brefel C., Fabre N., Rai S., Senard J.M., et al. Cortical motor veractivation in parkinsonian patientswith levodopa-inducedpeak-dose dyskinesia. Brain. 1998; 21(3): 527-33.
  34. Brooks D.J., Piccini P., Turjanski N., Samuel M. Neuroimaging of dyskinesia. Ann Neurol. 2000; 47(4): 154-8.
  35. Morgante F., Espay A.J., Gunraj C., Lang A.E., Chen R. Motor cortex plasticity in Parkinson's disease and levodopa-induced dyskinesias. Brain. 2006; 129(Pt4): 1059-69.
  36. Kishore A., Popa T., Velayudhan B., Joseph T., Balachandran A., Meunier S. Acute dopamine boost has a negative effect on plasticity of the primary motor cortex in advanced. Parkinson'sdisease. Brain. 2012; 135(7): 2074-88.
  37. East S.J., Parpy-Jones A., Brotchie J.M. lonotropic glutamate receptors and nitric oxide synthesis in the rat striatum. Neur. Report.1996; 8: 71-5.
  38. Carta M., Bezard E. Contribution of pre-synaptic mechanisms to L-DOPA-induced dyskinesia. Neuroscience. 2011; 198: 245-51.
  39. Nevalainen N., Af Bjerken S., Gerhardt G.A., Stromberg I. Serotonergic nerve fibers in L-DOPA-derived dopamine release and dyskinesia. Neuroscience. 2013; 260: 73-86.
  40. Rylander D., Parent M., O'Sullivan S.S., et al. Maladaptive plasticity of seroton in axon terminals in levodopa-induced dyskinesia. Ann Neurol. 2010; 68(5): 619-28.
  41. Pakkenberg B. Post-mortem study of chronics chizophrenic brains. Br. J. Psychiatry. 1987; 151: 744-52.
  42. Heckers S. Neuropathology of schizophrenia: cortex, thalamus, basal ganglia and neurotransmitter-specific projection systems. Schizophr. Bull. 1997; 23(3): 403-21.
  43. Li C.T., Chou K.H., Su T.P., et al. Graymatter abnormalities in schizophrenia patients with tardive dyskinesia: a magnetic resonance imaging voxel-based morphometry study. PLoS One. 2013; 8(8): e71034.
  44. Rascol O., Brooks D.J., Korczyn A.D., et al. A five-year study of the incidence of dyskinesia in patients with early Parkinson's disease whowere treated with ropinirole or levodopa. N. Engl. J. Med. 2000; 342(20): 1484-91.
  45. Holloway R. A randomized controlled trial comparing pramipexole with levodopa in early Parkinson's disease: design and methods of the CALM-PD study. Clin. l Europharmacol. 2000; 23(1): 34-4.
  46. Holloway R., Marek K., Biglan K., et al. Longterm effect of initiating pramipexole vs levodopa in early Parkinson disease. Arch. Neurol. 2009; 66(5): 563-70.
  47. Blanger N., Grgoire L., Tahar A.H., B'edard P.J. Chronic treatment with small doses of cabergoline prevents dopa-induced dyskinesias in Parkinsonian monkeys. Mov. Disord. 2003; 18(12): 1436-41.
  48. Blanchet P.J., Konitsiotis S., Chase T.N. Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov. Disord. 1998; 13(5): 798-802.
  49. Lundblad M., Usiello A., Carta M., et al. Pharmacological validation of a mouse model of L-dopa-induced dyskinesia. Exp. Neurol. 2005; 194(1): 66-75.
  50. Luginger E., Wenning G.K., Bosch S., Poewe W. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson's disease. Mov. Disord. 2000; 15(5): 873-78.
  51. Thomas A., Iacono D., Luciano A.L., et al. Duration of amantadine benefit on dyskinesia of severe Parkinson's disease. J. Neurol. Neurosurg. Psychiatry. 2004; 75(1): 141-43.
  52. Merello M., Perez-Lloret S., Antico J., Obeso J.A. Dyskinesias induced by subthalamotomy in Parkinson's disease are unresponsive to amantadine. J. Neurology. Neurosurg. Psychiatry. 2006; 77(2): 172-74.
  53. Del Dotto P., Pavese N., Gambaccini G., et al. Intravenous amantadine improves leva-dopa-induced dyskinesias: an acute doubleblind placebo-controlled study. Mov. Disord. 2001; 16(3): 515-20.
  54. Uitti R.J., Rajput A.H., Ahlskog J.E., et al. Amantadine treatment is an independent predictor of improved survival in parkinson's disease. Neurology. 1996; 46: 1551-56.
  55. Chen H.S., Pellegrini J.W., Aggarwal S.K., Lei S.Z., Warach S., Jensen F.E., Lipton S.A. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: Therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 1992; 12: 4427-36.
  56. Wenk G.L., Danysz W., Mobley S.L. MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. Eur. J. Pharmacol. 1995; 293: 267-70.
  57. Lang A.E., Blair R.D. Anticholinergic drugs and amantadine in the treatment of Parkinson's disease. In: Calne D.B., editor. Drugs for the treatment of parkinson's disease. New York: Springer-Verlag, 1989. P. 307-23.
  58. Caumont A.S., Octave J.N., Hermans E. Amantadine and memantine induce the expression of the glial cell line-derived neurotrophic factor in C6 glioma cells. Neurosci. Lett. 2006; 394: 196-201.
  59. Wu H.M., Tzeng N.S., Qian L., et al. B. Novel neuroprotective mechanisms of memantine: Increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacol. 2009; 34: 2344-57.
  60. Merello M., Nouzeilles M.I., Cammarota A., Leiguarda R. Effect of memantine (NMDA antagonist) on Parkinson's disease: a double-blind crossover randomized study. Clin. Neuropharmacol. 1999; 22(5): 273-76.
  61. Moreau C., Delval A., Tiffreau V., et al. Memantine for axial signs in Parkinson's disease: a randomised, double-blind, placebocontrolled pilot study. J. Neurol. Neurosurg. Psychiatry. 2013; 84(5): 552-55.
  62. Lökk J. Memantine can relieve certain symptoms in Parkinson's disease. Lakartidningen.2004; 101(23): 2003-6.
  63. Varanese S., Howard J., Di Rocco A. NMDA antagonist memantine improves levodopa-induced dyskinesias and «on-off» phenomena in Parkinson's disease. Movement. Disord. 2010; 25(4): 508-10.
  64. Picconi B., Calabresi P. Targeting metabotropic glutamate receptors as a new strategy against levodopa-induced dyskinesia in Parkinson's disease? Mov. Disord. 2014; 29(6): 715-19.
  65. Pierelli F., Adipietro A., Soldati G., et al. Low dosage clozapine effects on L-dopa induced dyskinesias in parkinsonian patients. Acta Neurol. Scand. 1998; 97; 295-99.
  66. Durif F., Deilly B., Galitzky M., et al. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology. 2004; 62: 381-88.
  67. Oh J.D., Bibbiani F., Chase T.N. Quetiapine attenuates levodopa-induced motor complications in rodent and primate parkinsonian models. Exp. Neurol. 2002; 177(2): 557-64.
  68. Katzenschlager R., Manson A.J., Evans A., Watt H., Lees A.J. Low dose quetiapine for drug induced dyskinesias in Parkinson's disease: a double blind cross over study. J. Neurol. Neurosurg. Psychiatry. 2004; 75(2): 295-97.
  69. Cenci M.A., Lindgen H.S. Advances in understanding L-DOPA-induced dyskinesia. Cur. Opin. Neurobiol. 2007; 17: 665-71.
  70. Huot P., Fox S.H., et al. The serotonergic system in Parkinson’s disease. Prog. Neurobiol. 2011; 95: 163-212.
  71. Carta M., Carlsson T., Kirik D., Bjorklund A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain.2007; 130(Pt 7): 1819-33.
  72. Eskow K.L., Dupre K.B., Barnum C.J., et al. The role of the dorsal raphe nucleus in the development, expression, and treatment of L-dopa-induced dyskinesia in hemiparkinsonian rats. Synapse. 2009; 63(7): 610-20.
  73. Bibbiani F., Oh J.D., Chase T.N. Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology. 2001; 57(10): 1829-34.
  74. Eskow K.L., Gupta V., Alam S., et al. The partial 5-HT(1A) agonist buspirone reduces the expression and development of L-DOPA-induced dyskinesia in rats and improves L-DOPA efficacy. Pharmacol. Biochem. Behav. 2007; 87(3): 306-14.
  75. Munoz A., Carlsson T., Tronci E., et al. Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp. Neurol. 2009; 219(1): 298-307.
  76. Munoz A., Li Q., Gardoni F., Marcello E., et al. Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain. 2008; 131(Pt 12): 3380-94.
  77. Bezard E., Munoz A., Tronci E., et al. Antidyskinetic effect of anpirtoline in animal models of L-DOPA-induced dyskinesia. Neurosci. Res. 2013; 77(4): 242-46.
  78. Bezard E., Tronci E., Pioli E.Y., et al. Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov. Disord. 2013; 28(8): 1088-96.
  79. Iderberg H., Rylander D., Bimpisidis Z., Cenci M.A. Modulating mGluR5 and 5-HT1A/1B receptors to treat L-DOPA-induced dyskinesia: effects of combined treatment and possible mechanisms of action. Exp. Neurol. 2013; 250: 116-24.
  80. Dupre K.B., Eskow K.L., Barnum C.J., Bishop C. Striatal 5-HT1A receptor stimulation reduces D1 receptor-induced dyskinesia and improves movement in the hemiparkinsonian rat. Neuropharmacol. 2008; 55(8): 1321-28.
  81. Dupre K.B., Ostock C.Y., Eskow Jaunarajs K.L., et al. Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic hemiparkinsonian rats. Exp. Neurol. 2011; 229(2): 288-99.
  82. Tronci E., Lisci C., Stancampiano R., et al. 5-Hydroxy-tryptophan for the treatment of L-DOPA-induced dyskinesia in the rat Parkinson’s disease model. Neurobiol. Dis. 2013; 60: 108-14.
  83. Bishop C., George J.A., Buchta W., et al. Serotonin transporter inhibition attenuates L-DOPA-induced dyskinesia without compromising L-DOPA efficacy in hemi-parkinsonian rats. Eur. J. Neurosci. 2012; 36(6): 2839-48.
  84. Conti M.M., Ostock C.Y., Lindenbach D., et al. Effects of prolonged selective serotonin reuptake inhibition on the development and expression of L-DOPA-induced dyskinesia in hemi-parkinsonian rats. Neuropharmacol. 2014; 77: 1-8.
  85. Olanow C., Damier P., Goetz C., et al. Multicenter, open-label, trial of sarizotan in Parkinson disease patients with levodopa-induced dyskinesias (the SPLENDID Study). Clin. Neuropharmacol. 2004; 27(2): 58-62.
  86. Goetz G., Damier P., Hicking C., et al. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebocontrolled trial. Mov. Disord. 2007; 22(2): 179-86.
  87. Bartoszyk G., Van Amsterdam C., Greiner H., et al. Sarizotan, a serotonin 5-HT1A receptor agonist and dopamine receptor ligand. 1. Neurochemical profile. J. Neural. Transm. 2004; 111(2): 113-26
  88. Politis M., Wu K., Loane C., et al. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J. Clin. Invest. 2014; 124(3): 1340-49.
  89. Rylander D., Parent M., O’Sullivan S.S., et al. Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol. 2010; 68(5): 619-28.
  90. http://www.psychogenics.com/press2012.html
  91. Brooks D.J., Papapetropoulos S., Vandenhende F., et al. An open-label, positron emission tomography study to assess adenosine A2A brain receptor occupancy of vipadenant (BIIB014) at steady-state levels in healthy male volunteers. Clin. Neuropharmacol. 2010; 33(2): 55-60.
  92. LeWitt P.A., Guttman M., Tetrud J.W., et al. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces off time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann. Neurol. 2008; 63(3): 295-302.
  93. Hauser R.A., Cantillon M., Pourcher E., et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol. 2011; 10(3): 221-29.
  94. Vitek J.L., Bakay R.A., Freeman A., et al. Randomized trial of pallidotomy versus medical therapy for Parkinson’s disease. Ann. Neurol. 2003; 53: 558-69.
  95. Kleiner-Fisman G., Lozano A., Moro E., et al. Long-term effectof unilateral pallidotomy on levodopa-induced dyskinesia. Mov. Disord. 2010; 25: 1496-98.
  96. Hariz M.I., Bergenheim A.T. A 10-year follow-up review of patients who underwent Leksell’s posteroventral pallidotomy for Parkinson disease. J. Neurosurg. 2001; 94: 552-58.
  97. Terzic D., Abosch A. Update on deep brain stimulation for Parkinson’s disease. J. Neurosurg Sci. 2012; 56: 267-77.
  98. Deep-Brain Stimulation for Parkinson’s Disease Study Group X. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med. 2001; 345: 956-63.
  99. Volkmann J., Allert N., Voges J., et al. Longterm results of bilateral pallidal stimulation in Parkinson’s disease. Ann Neurol. 2004; 55: 871-75.
  100. Schupbach W.M., Chastan N., Welter M.L., Houeto J.L., Mesnage V. Bonnet A.M. et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J. Neurol. Neurosurg. Psychiatry.2005; 76: 1640-44. 101
  101. Stocchi F., Vacca L., De Pandis M., et al. Subcutaneous continuous apomorphine infusion in fluctuating patients with Parkinson’s disease: long-term results. Neurol. Sci. 2001; 22(1): 93-4
  102. Katzenschlager R., Hughes A., Evans A., et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson's disease: a prospective study using singl-dose challenges. Mov. Disord. 2005; 20(2): 151-57.
  103. Manson A.J., Turner K., Lees A.J. Apomorphine monotherapy in the treatment of refractory motor complications of Parkinson's disease: long-term follow-up study of 64 patients. Mov. Disord. 2002; 17(6): 1235-41.
  104. Kanovsk P., Kubov D., Bares M., et al. Levodopa-induced dyskinesias and continuous subcutaneous infusions of apomorphine: results of a two-year, prospective follow-up. Mov. Disord. 2002; 17(1): 188-91.
  105. Espay A.J., Vanagunas A.D., Hauser R.A., et al. Levodopa-carbidopa intestinal gel in Parkinson's disease patients with severe motor fluctuations: Interim safety and motor-symptom endpoints in an ongoing, open-label study. Movement Disorder Society Annual Meeting. June 17-21, 2012; Dublin, Ireland.
  106. Nilsson D., Hansson L.E., Johansson K., et al. Long-term intraduodenal infusion of a water based levodopa-carbidopa dispersion in very advanced Parkinson's disease. Acta Neurol. Scand. 1998; 97: 175-83.
  107. Antonini A., Isaias I.U., Canesi M., et al. Duodenal levodopa infusion for advanced Parkinson's disease: 12-month treatment outcome. Mov. Disord. 2007; 22: 1145-49.
  108. Eggert K., Schrader C., Hahn M., Stamelou M., Russmann A., Dengler R., et al. Continuous jejunal levodopa infusion in patients with advanced Parkinson disease: practical aspects and outcome of motor and non-motor complications. Clin. Neuropharmacol. 2008; 31: 151-66.
  109. Santos-Garcia D., Macias M., Llaneza M., et al. Experience with continuous levodopa enteral infusion (Duodopa) in patients with advanced Parkinson's disease in a secondary level hospital. Neurologia. 2010; 25(9): 536-43.
  110. Antonini A., Mancini F., Canesi M., et al. Duodenal levodopa infusion improves quality of life in advanced Parkinson's disease. Neurodegener. Dis. 2008; 5: 244-46.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies