VLIYaNIE PROSTRANSTVENNO-VREMENNOGO RASPREDELENIYa KONTsENTRATsII IMIPRAMINA VBLIZI KROVENOSNYKh SOSUDOV NA ENERGETIChESKOE OBESPEChENIE NEYRONOV


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Imipramine is a well known representative of tricyclic antidepressants. Apart from the main effect, experimental studies previously have shown its uncoupling and inhibitory action at the level of oxidative phosphorylation in mitochondria. At the same time, this drug has antioxidant properties and positive effect on neuron bioenergetics in vivo. The results of the study explaining this paradox are presented. It has been shown that the high concentrations of imipramine are located near the blood vessel walls, which reduces the area exposing its negative impact. This gradient property in the case of active succinate-dependent respiration and high levels of glycolysis (achieved in particular in neuroprotection by the amino acid glycine) can explain the paradoxical effect of imipramine on oxidative phosphorylation in the mitochondria of neurons.

Full Text

Restricted Access

References

  1. Vares E.A., Salum G.A., Spanemberg L., Caldieraro M.A, Fleck M.P. Depression dimensions: Integrating clinical signs and symptoms from the perspectives of clinicians and patients. PLoS ONE. 2015; 10(8): e0136037.
  2. Vittengl J.R., Jarrett R.B. Cognitive therapy to prevent depressive relapse in adults. Curr. Opin. Psychol. 2015; 4: 26-31.
  3. Gardner A., Boles R.G. Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2011; 35(3): 730-43.
  4. Chopra K., Kumar B., Kuhad A. Pathobiological targets of depression. Expert Opinion on Therapeutic Target. 2011; 15(4): 379-400.
  5. Shao L., Martin M.V., Watson S.J., Schatzberg A., Akil H., Myers R.M., Jones E.G., Bunney W.E., Vawter M.P. Mitochondrial involvement in psychiatric disorders Annals of Medicine. 2008; 40(4): 281-95.
  6. Jou S.H., Chiu N.Y., Liu C.S. Mitochondrial dysfunction and psychiatric disorders. Chang Gung. Med. J. 2009; 32: 370-79.
  7. Nierenberg A.A., Kansky C., Brennan B.P., Shelton R.C., Perlis R., losifescu D.V. Mitochondrial modulators for bipolar disorder: A pathophysiologically informed paradigm for new drug development. Austral. New Zealand J. Psychiatry. 2013; 47(1): 26-42.
  8. Burbenskay N.M., Nartsissov Ya.R., Tsofina L.M., Komissarova I.A. The uncoupling effect of some psychotropic drugs on oxidative phosphorylation in rat liver mitochondria. Biochemistry and Molecular Biology International. 1998; 45(2): 261-68.
  9. Hroudova J., Fisar Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro. Endocrinol. Lett. 2010; 31: 336-42.
  10. Katyare S.S., Rajan R.R. Effect of long-term in vivo treatment with imipramine on the oxidative energy metabolism in rat brain mitochondria. Comp. Biochem. Psysiol. C. Pharmacol. Toxicol. Endocrinol. 1995; 112: 353-57.
  11. Behr G.A., Moreira J.C.F., Frey B.N. Preclinical and clinical evidence of antioxidant effects of antidepressant agents: Implications for the pathophysiology of major depressive disorder. Oxidative Medicine and Cellular Longevity. 2012; 2012: 609421.
  12. Koopman W.J., Verkaart S., Visch H.J., van der Westhuizen F.H., Murphy M.P., van den Heuvel L.W., Smeitink J.A., Willems P.H. Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial outgrowth. Am. J. Physiol. Cell Physiol. 2005; 288: 1440-50.
  13. Balaban R.S., Nemot, S., Finkel T. Mitochondria, oxidants, and aging. Cell. 2005120, 483-95.
  14. Подопригора Г.И., Нарциссов Я.Р., Александров П.Н. Влияние глицина на микроциркуляцию в пиальных сосудах головного мозга крыс. Бюл. экспер. биол. 2005; 139(6): 642-44.
  15. Barthod-Malat A., Kopylova V., Podoprigora G.I., Nartsissov Y.R., Angou O., Young P.G., Crolet J.M., Blagosklonov O. Development of multi-compartment model of the liver using image-based meshing software. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMB. 2012; 2012: 5522-25.
  16. Нарциссов Я.Р., Тюкина Е.С., Бороновский С.Е., Шешегова Е.В. Моделирование пространственно-временных распределений концентраций метаболитов в фантомах биологических объектов на примере пиальных оболочек головного мозга крыс. Биофизика. 2013; 58(5): 887-96.
  17. Novikov F.N., Chilov G.G. Molecular docking: theoretical background, practical applications and perspectives. Mendeleev Communications. 2009; 19(5): 237-42.
  18. Ragusi C., Scherrmann J.-M., Harrison K., Smith D.S., Rips R., Boschi G. Redistribution of imipramine from regions of the brain under the influence of circulating specific antibodies. J. Neurochemistry. 1998; 70 (5): 2099-105.
  19. Voican C.S., Corruble E., Naveau S., Perlemuter G. Antidepressant-induced liver injury: A review for clinicians. Am. J. Psychiatry. 2014; 171(4): 404-15.
  20. Тоньшин А.А., Лобышева Н.В., Ягужинский Л.С., Безгина Е.Н., Мошков Д.А., Нарциссов Я.Р. Влияние тормозного нейромедиатора глицина на медленные деструктивные процессы в срезах коры больших полушарий головного мозга при аноксии. Биохимия. 2007; 72(5): 631-41.
  21. Селин А.А., Лобышева Н.В., Воронцова О.Н., Тоньшин А.А., Ягужинский Л.С., Нарциссов Я.Р. Механизм действия глицина как протектора нарушения энергетики тканей мозга в условиях гипоксии. Бюлл. эксперимент. биол. и мед. 2012; 153(1): 52-5.
  22. Lobysheva N.V., Tonshin A.A., Selin A.A., Yaguzhinsky L.S., Nartsissov Y.R. Diversity of neurodegenerative processes in the model of brain cortex tissue ischemia. Neurochem. Int. 2009;54(5-6):322-29

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies