New molecular subtypes of non-small cell lung cancer and the possibilities of their treatment


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The tactics of treatment of the pulmonary adenocarcinoma is based on the identification of molecular genetic disorders. Over the past 10 years, a number of subtypes of this disease associated with various disorders have been identified. Activating BRAF gene mutations determine the pathogenesis of 1-4% of cases of pulmonary adenocarcinoma. The presence of these molecular disorders correlates with history of smoking. The use of BRAF inhibitors in combination with MEK inhibitors in this group of patients makes it possible to achieve a clinical effect in 75% of patients and 13-15 months without progression of the disease. Development of the optimal algorithm for screening of glandular lung tumors, including for the presence of BRAF mutations, will significantly improve the results of drug therapy for this group of patients.

Full Text

Restricted Access

About the authors

F. V Moiseenko

«NMRC of Oncology n.a. N.N. Petrov» of RMH; St. Petersburg Clinical Scientific and Practical Center of Specialized Medical Assistance (Oncological); FSBEI HE «North-Western State Medical University n.a. I.I. Mechnikov» of RMH

MD, Researcher at the Department of Innovative Methods of Therapeutic Oncology and Rehabilitation; Head of Oncological Chemotherapeutic (Antitumor Drug Therapy) Department of Biotherapy; Associate Professor at the Department of Oncology

A. A Kudryavtsev

«NMRC of Oncology n.a. N.N. Petrov» of RMH

Laboratory of the Department of Innovative Methods of Therapeutic Oncology and Rehabilitation

A. V Myslik

«NMRC of Oncology n.a. N.N. Petrov» of RMH

Laboratory of the Department of Innovative Methods of Therapeutic Oncology and Rehabilitation

N. M Volkov

«NMRC of Oncology n.a. N.N. Petrov» of RMH

Laboratory of the Department of Innovative Methods of Therapeutic Oncology and Rehabilitation

References

  1. Peters S., Camidge D.R., Shaw A.T., Gadgeel S., Ahn J.S, Kim D.W., Ou S.I., Perol M., Dziadziuszko R., Rosell R., Zeaiter A., Mitry E., Golding S., Balas B., Noe J., Morcos P.N., Mok T. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017;377(9):829-38.
  2. Ramalingam S.S., Yang J.C., Lee C.K., Kurata T., Kim D.W., John T., Nogami N., Ohe Y., Mann H., Rukazenkov Y., Ghiorghiu S., Stetson D., Markovets A., Barrett J.C., Thress K.S., Jänne P.A. Osimertinib As First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2017;JCO2017747576.
  3. Mok T.S., Wu Y-L., Ahn M-J., Garassino M.C., Kim H.R., Ramalingam S.S., Shepherd F.A., He Y., Akamatsu H., Theelen W.S., Lee C.K., Sebastian M., Templeton A., Mann H., Marotti M., Ghiorghiu S., Papadimitrakopoulou V.A. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017;376(7):629-40.
  4. Tamura T, Kiura K., Seto T., Nakagawa K., Maemondo M., Inoue A., Hida T., Yoshioka H., Harada M., Ohe Y., Nogami N., Murakami H., Kuriki H., Shimada T., Tanaka T., Takeuchi K., Nishio M. Three-Year Follow-Up of an Alectinib Phase I/II Study in ALK-Positive Non-Small-Cell Lung Cancer: AF-001JP J. Clin. Oncol. 2017;35(14):1515-21.
  5. Cancer Genome Atlas Research Network. Weinstein J.N.,Collisson E.A.,MillsG.B.,Shaw K.R., Ozenberger B.A., Ellrott K., Shmulevich I., Sander C., Stuart J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113-20.
  6. Kimura E.T., Nikiforova M.N., Zhu Z., Knauf J.A., Nikiforov Y.E., Fagin J.A. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63(7):1454-57.
  7. De Roock W., Claes B., Bernasconi D., et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753-62.
  8. Davies H., Bignell G.R., Cox C., et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949-54.
  9. Goeppert B., et al. BRAF V600E-specific immunohistochemistry reveals low mutation rates in biliary tract cancer and restriction to intrahepatic cholangiocarcinoma. Mod, Pathol. 2014;27(7):1028-34.
  10. Paik K., Arcila M.E., Fara M., Sima C.S., Miller V.A., Kris M.G., Ladanyi M., Riely G.J. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. P. J. Clin. Oncol. 2011;29(15):2046-51.
  11. Brustugun O.T., Khattak A.M., Tr0mborg A.K., Beigi M., Beiske K., Lund-Iversen M., Helland A. BRAF-mutations in non-small cell lung cancer. Lung Cancer. 2014;84(1):36-8.
  12. Marchetti A., Felicioni L., Malatesta S., Grazia Sciarrotta M., Guetti L.,Chella A., Viola P., Pullara C., Mucilli F., Buttitta F. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J. Clin. Oncol. 2011;29(26):3574-79.
  13. Villaruz L.C., Felicioni L., Malatesta S., Grazia Sciarrotta M., Guetti L., Chella A., Viola P., Pullara C., Mucilli F., Buttitta F. Clinicopathologic features and outcomes of patients with lung adenocarcinomas harboring BRAF mutations in the Lung Cancer Mutation Consortium. Cancer. 2015;121(3):448-56.
  14. Litvak A.M., Paik P.K., Woo K.M., et al. Clinical characteristics and course of 63 patients with BRAF mutant lung cancers. J. Thorac. Oncol. 2014;9(11):1669-74.
  15. Kinno T., Tsuta K., Shiraishi K., Mizukami T., Suzuki M., Yoshida A., Suzuki K., Asamura H., Furuta K., Kohno T., Kushima R. Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations. Ann Oncol. 2014;25(1):138-42.
  16. Kobayashi M., Sonobe M., Takahashi T., Yoshizawa A., Ishikawa M., Kikuchi R., Okubo K., Huang C.L., Date H. Clinical significance of BRAF gene mutations in patients with non-small cell lung cancer. Anticancer Res. 2011;31(12):4619-23.
  17. Baik C.S., Myall N.J., Wakelee H.A. Targeting BRAF-Mutant Non-Small Cell Lung Cancer: From Molecular Profiling to Rationally Designed Therapy. Oncologist. 2017;22(7):786-96.
  18. Tissot C., Couraud S., Tanguy R., Bringuier P.P., Girard N., Souquet PJ. Clinical characteristics and outcome of patients with lung cancer harboring BRAF mutations. Lung Cancer. 2016;91:23-8.
  19. Cardarella S.,Ogino A., Nishino M., Butaney M., Shen J., Lydon C., Yeap B.Y., Sholl L.M., Johnson B.E., Jänne P.A. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin. Cancer Res. 2013;19(16):4532-40.
  20. Flaherty K. T., Robert C., Hersey P., et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 2012;367(2): 107-14.
  21. Hocker T., Tsao H. Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum. Mutat. 2007;28(6):578-88.
  22. Jakob J.A., Bassett R.L. Jr., Ng C.S., Curry J.L., Joseph R.W., Alvarado G.C., Rohlfs M.L., Richard J., Gershenwald J.E., Kim K.B., Lazar A.J., Hwu P., Davies M.A. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014-23.
  23. Saint-Jean M., Quereux G., Nguyen J.M., et al. Is a single BRAF wild-type test sufficient to exclude melanoma patients from vemurafenib therapy. J. Invest. Dermatol. 2014;134(5):1468-70.
  24. Yancovitz M., Litterman A., Yoon J., Ng E., Shapiro R.L., Berman R.S., Pavlick A.C., Darvishian F., Christos P., Mazumdar M., Osman I., Polsky D. Intra- and inter-tumor heterogeneity of BRAF(V600E))mutations in primary and metastatic melanoma. PLoS One. 2012;7(1):e29336.
  25. Harbst K., Lauss M., Cirenajwis H., et al. Multiregion Whole-Exome Sequencing Uncovers the Genetic Evolution and Mutational Heterogeneity of Early-Stage Metastatic Melanoma. Cancer Res. 2016;76(16): 4765-74.
  26. Tatematsu T., Sasaki H., Shimizu S., Hikosaka Y., Okuda K., Haneda H., Moriyama S., Yano M., Fujiiet Y. Intra-tumor heterogeneity of BRAF V600E mutation in lung adenocarcinomas. Exp Ther Med. 2015;9(5):1719-22.
  27. Gautschi O., Milia J., Cabarrou B., et al. Targeted Therapy for Patients with BRAF-Mutant Lung Cancer: Results from the European EURAF Cohort. J. Thorac. Oncol. 2015;10: 1451-57.
  28. Weber J.S., et al. Updated safety and efficacy results from a phase I/II study of the oral BRAF inhibitor dabrafenib (GSK2118436) combined with the oral MEK 1/2 inhibitor trametinib (GSK1120212) in patients with BRAFi-naive metastatic melanoma. ASCO Meeting Abstracts. 2012;30(15_suppl):8510.
  29. Planchard D., et al. Interim results of a phase II study of the BRAF inhibitor (BRAFi) dabrafenib (D) in combination with the MEK inhibitor trametinib (T) in patients (pts) with BRAF V600E mutated (mut) metastatic non-small cell lung cancer (NSCLC). ASCO Meeting Abstracts. 2015;33(15_suppl):8006.
  30. Planchard D., Smit E.F., Groen H.J.M., Mazieres J., Besse B., Helland Ä., Giannone V., D'Amelio A.M., Zhang P., Mookerjee B., Johnson B.E. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307-16.
  31. Noeparast A., Teugels E., Giron P., Verschelden G., De Brakeleer S., Decoster L., De Grve J. Non-V600 BRAF mutations recurrently found in lung cancer predict sensitivity to the combination of Trametinib and Dabrafenib. Oncotarget. 2017;8(36):60094-108.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies