Botulinotherapy in complex rehabilitation of patients with poststroke lower limb spasticity


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The development of lower limb spastic paresis is a frequent consequence of a stroke. The presence of motor weakness and increased muscle tone leads to the formation of pathological patterns, disrupts gait and balance, causes falls, disables patients, and significantly reduces their quality of life. Rehabilitation of such patients is a complex and time-consuming process requiring correct assessment of the neurological deficit, development of an individual rehabilitation program involving a multidisciplinary team of specialists. In the last decade, preparations of botulinum toxin type A have been actively used in complex rehabilitation programs to correct focal and multifocal lower limb spasticity in order to reduce muscle tone. However, their effectiveness in improving limb function is not so obvious. The article analyzes the results of several studies conducted in the world over the last 5 years with one of the preparations of botulinum toxin type A - Incobotulinumtoxin A (Inco-BTA), in patients with spasticity of the lower extremity, which showed its efficacy and safety in clinical practice with regard to not only decrease muscle tone, but also improve the function of the lower limb and also discussed methods of rehabilitation with different levels of evidence, used in practical health care in this category of patients.

Full Text

Restricted Access

About the authors

S. E Khatkova

Treatment and Rehabilitation Center, Moscow; Burnasyan Federal Medical Biophysical Center

Email: Hse15@mail.ru
MD, Prof.

L. V Krylova

Hospital for War Veterans, Naberezhnye Chelny

M. A Akulov

N.N. Burdenko National Scientific and Practical Center for Neurosurgery

A. A Balbert

Sverdlovsk Regional Clinical Psychoneurological Hospital for War Veterans

References

  1. Belagaje S.R. Stroke Rehabilitation. Continuum (Minneap Minn). 2017;23(1):238-53.
  2. Sommerfeld D.K., Eek E.U., Svensson A.K., et al. Spasticity after stroke: its occurence and association with motor impairments and activity limitations. Stroke. 2004;35(1):134-39.
  3. Balasubramanian C.K., Clark D.J., Fox E.J. Walking adaptability after a stroke and its assessment in clinical settings. Stroke Res. Treat. 2014;2014:591013.
  4. Corbetta D., Imeri F., Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J. Physiother. 2015; 61(3):117-24.
  5. Sanchez N., Acosta A.M., Lopez-Rosado R., et al. Lower Extremity Motor Impairments in Ambulatory Chronic Hemiparetic Stroke: Evidence for Lower Extremity Weakness and Abnormal Muscle and Joint Torque Coupling Patterns. Neurorehabil. Neural. Repair. 2017;31(9):814-26.
  6. Hong E. Comparison of quality of life according to community walking in stroke patients. J. Phys. Ther. Sci. 2015;27(7):2391-93.
  7. Wissel J., Manack A., Brainin M. Toward an epidemiology of poststroke spasticity. Neurology. 2013;80:13.
  8. Dressler D., Rychlik R., Kreimendahl F., et al. Open long-term efficacy and safety of incobotulinumtoxin A and conventional treatment of poststroke arm spasticity: a prospective, noninterventional, open- abel, parallel-group study. BMJ. Open. 2015;5(12):009358.
  9. vKanovsky P., Slawek J., Denes Z., et al. Efficacy and safety of botulinum neurotoxin NT 201 in poststroke upper limb spasticity. Clin. Neuropharmacol. 2009;32:259-65.
  10. Simpson D., Hallet M., Ashman E.J., et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache. Neurology. 2016;86:1818-26.
  11. Wissel J., Ward A.B., Erztgaard P., et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J. Rehabil. Med. 2009;41:13-25.
  12. Хасанова Д.Р., Агафонова Н.В., Старостина Г.Х. и др. Постинсультная спастичность. Consilium Medicum. 2016;18(2):31-6. [Khasanova D.R., Agafonova N.V., Starostina G.H., et al. Post-stroke spasticity. Consilium Medicum. 2016;18(2):31-6. (In Russ.)].
  13. Райхель Г. Терапевтическое руководство спастичность - дистонии. Первое издание. Бремен: Уни-Мед, 2013. C. 12-3. [Rajhel' G. Therapeutic guidelines spasticity-dystonia. First edition. Bremen: Uni-Med, 2013. P. 12-3. (In Russ.)].
  14. Завалишин И.А., Смойда Н.И., Шитонова И.Е. Клиническая характеристика синдрома верхнего мотонейрона. Самара: Самарское отделение литфонда, 2005. C. 5-11. [Zavalishin I.A., Smojda N.I., Shitonova I.E. Clinical characteristics of upper motor neuron syndrome. Samarskoe otdelenie litfonda, 2005. P. 5-11. (In Russ.)].
  15. Trompetto C., Marinelli L., Mori L., et al. Pathophysiology of Spasticity: Implications for Neurorehabilitation. Biomed. Res. Int. 2014;2014:354906.
  16. Gracies J.M. Pathophysiology of spastic paresis II: Emergence of muscle overactivity. Muscle Nerve. 2005;31(5):552-71.
  17. Хабиров Ф.А., Кочергина О.С., Рахматуллина Э.Ф. и др. Организация ранней реабилитации постинсультных больных с двигательным дефицитом. Казанский медицинский журнал. 2011;92(1):97-100. [Khabirov F.A., Kochergina O.S., Rahmatullina Eh.F., et al. Organization of early rehabilitation of post-stroke patients with motor deficit. Kazanskij medicinskij zhurnal. 2011;92(1):97-100. (In Russ.)].
  18. Modesto P.C., Pinto F.C. Comparison of functional electrical stimulation associated with kinesiotherapy and kinesiotherapy alone in patients with hemiparesis during the subacute phase of ischemic cerebrovascular accident. Arq Neuropsiquiatr. 2013;71(4):244-48.
  19. Seo K., Park S.H., Park K. The effects of stair gait training using proprioceptive neuromuscular facilitation on stroke patients' dynamic balance ability. J. Phys. Ther. Sci. 2015;27(5):1459-62.
  20. Wang J.S., Lee S.B., Moon S.H. The immediate effect of PNF pattern on muscle tone and muscle stiffness in chronic stroke patient. J. Phys. Ther. Sci. 2016; 28(3):967-70.
  21. Chuang L.L., Wu C.Y., Lin K.C. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 2012;93(3):532-40.
  22. Jeong W.S., Park S.K., Park J.H., et al. Effect of PNF combination patterns on muscle activity of the lower extremities and gait ability in stroke patients. J. Korea Cont. Socie Associ. 2012;12:312-28.
  23. Bethoux F. Spasticity Management After Stroke. Phys. Med. Rehabil. Clin. N. Am. 2015;26(4):625-39.
  24. Wang Y.H., Meng F., Zhang Y., et al. Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: a randomized controlled study. Clin. Rehabil. 2016;30(6):577-86.
  25. Intiso D., Santamato A., Di Rienzo F. Effect of electrical stimulation as an adjunct to botulinum toxin type A in the treatment of adult spasticity: a systematic review. Disabil. Rehabil. 2017;39(21):2123-33.
  26. Picelli A., Dambruoso F., Bronzato M., et al. Efficacy of therapeutic ultrasound and transcutaneous electrical nerve stimulation compared with botulinum toxin type A in the treatment of spastic equinus in adults with chronic stroke: a pilot randomized controlled trial. Top. Stroke Rehabil. 2014;21(1):8-16.
  27. Wist S., Clivaz J., Sattelmayer M. Muscle strengthening for hemiparesis after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2016;59(2):114-24.
  28. Lund C., Dalgas U., Gronborg T.K., et al. Balance and walking performance are improved after resistance and aerobic training in persons with chronic stroke. Disabil. Rehabil. 2017:1-8.
  29. Lee K.H., Kim J.H., Choi D.H., Lee J. Effect of task-specific training on functional recovery and corticospinal tract plasticity after stroke. Restor. Neurol. Neurosci. 2013;31(6): 773-85.
  30. Zhang X., Yue Z., Wang J. Robotics in Lower-Limb Rehabilitation after Stroke. Behav. Neurol. 2017;2017:3731802.
  31. Sen C.K., Khanna S., Harris H., et al. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury. FASEB. J. 2017;31(3):927-36.
  32. Hung C.S., Hsieh Y.W., Wu C.Y., et al. The Effects of Combination of Robot-Assisted Therapy With Task-Specific or Impairment-Oriented Training on Motor Function and Quality of Life in Chronic Stroke. PMR. 2016;8(8):721-29.
  33. Chang W.H., Kim Y.H. Robot-assisted Therapy in Stroke Rehabilitation. J. Stroke. 2013;15(3):174-81.
  34. Duschau-Wicke A., CaprezA., Riener R. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J. Neuroeng. Rehabil. 2010;7:43.
  35. Long Y., Du Z., Cong L., et al. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. SA Trans. 2017;67:389-97.
  36. van der Kooij H., Koopman B., van Asseldonk E.H. Body weight support by virtual model control of an impedance controlled exoskeleton (LOPES) for gait training. Conf Proc IEEE Eng Med. Biol. Soc. 2008;2008: 1969-72.
  37. Nomura K., Yonezawa T., Ogitsu T., et al. Development of Stewart platform type ankle-foot device for trip prevention support. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015;2015:4808-11.
  38. Waldner A., Tomelleri C., Hesse S. Transfer of scientific concepts to clinical practice: recent robot-assisted training studies. Funct. Neurol. 2009;24(4):173-77.
  39. Dundar U., Toktas H., Solak O., et al. A comparative study of conventional physiotherapy versus robotic training combined with physiotherapy in patients with stroke. Top. Stroke Rehabil. 2014;21(6):453-61.
  40. Хатькова С.Е., Акулов М.А., Усачев Д.Ю. и др. Особенности коррекции синдрома спастичности у пациентов с очаговыми повреждениями центральной нервной системы. Consilium Medicum. 2017;19(2.1): 25-30. [Khat'kova S.E., Akulov M.A., Usachev D.Yu., et al. Features of spasticity syndrome correction in patients with focal lesions of the Central nervous system. Consilium Medicum. 2017;19(2.1):25-30. (In Russ.)].
  41. Simpson D.M., Hallett M., Ashman E.J., et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity and headache. J. Neurology. 2016;86:1818-26.
  42. Frevert J. Content of botulinum neurotoxin in Botox®/Vistabel®, Dysport®/Azzalure® and Xeomin®/Boconture®. Drugs RD. 2010;10(2):67-73.
  43. Grein S., Mander G.J., Fink K. Stability of botulinum neurotoxin type A, devoid of complexing proteins. The Botulinum J. 2011;2:49-57.
  44. Santamato A., Micello M.F., Panza F., et al. Safety and efficacy of incobotulinum toxin type A (NT 201-Xeomin) for the treatment of post-stroke lower limb spasticity: a prospective open-label study. Eur. J. Phys. Rehabil. Med. 2013;49:1-2.
  45. Santamato A., Panza F., Ranieri M., et al. Efficacy and safety of higher doses of botulinum toxin type A NT 201 free from complexing proteins in the upper and lower limb spasticity after stroke. J. Neurol. Transm. 2013;120(3):469-76.
  46. Santamato A., Panza F., Intiso D., et al. Long-term safety of repeated high doses of incobotulinumtoxin A injections for the treatment of upper and lower limb spasticity after stroke. J. Neuro. Sci. 2017;378:182-86.
  47. Dressler D., Saberi F.A., Kollewe K., Schrader C., et al. Safety aspects of incobotulinumtoxin A high-dose therapy. J. Neural. Transm. (Vienna). 2015;122:327-33.
  48. Wissel J., Besmail D., Molteni F. Safety and efficacy of incobotulinumtoxin A doses up 800 U in limb spasticity. Neurology. 2017;88(14): 1321-28.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies