Current possibilities of nebulizer therapy in the treatment of respiratory pathology in children


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Inhalation therapy for respiratory diseases with high prevalence is an important method of therapeutic care for children in modern settings. The advantages of such a treatment method relate to the ability to deliver drugs directly to the target organ, which makes the use of low doses of drugs effective by creating a high concentration of drugs directly in the respiratory tract. The effectiveness of inhalation therapy largely depends not only on the type and dosage of the drug, but also on the characteristics of inhalation devices that are very diverse. Recent decades have been marked by the discovery of new and improved systems for delivering drugs to the respiratory system. Nebulizer therapy is most widely used in pediatric practice, allowing the use of all standard inhalation solutions and their permissible combinations in children of any age, as well as in severe patients.

Full Text

Restricted Access

About the authors

M. D Shakhnazarova

Sechenov University; N.F. Filatov Clinical Institute of Children Health

Email: marinashakh@mail.iu
Cand. Sci. (Med.), Associate Professor, Department of Childhood Diseases

N. A Geppe

Sechenov University

I. V Ozerskaya

Sechenov University

M. M Chepurnaya

Rostov State Medical University

S. I Shatalina

Sechenov University; N.F. Filatov Clinical Institute of Children Health

References

  1. Stein S.W, Thiel C.G. The History of Therapeutic Aerosols: A Chronological Review. J Aerosol Med Pulm Drug Deliv. 2017;30(1):20-41. doi: 10.1089/jamp.2016.1297.
  2. Boe J., Dennis J.H., O'Drisscol B.R. Europian Respiratory Society Guidelines on the use of Nebulizers. ERJ. 2001;18(1):228-42. doi: 10.1183/09031936.01.00220001.
  3. Gillen M, Forte P, Svensson J.O., et al. Effect of a spacer on total systemic and lung bioavailability in healthy volunteers and in vitro performance of the Symbicort® (budesonide/formoterol) pressurized metered dose inhaler Pulm Pharmacol Ther. 2018;52:7-17. Doi: 10.1016/j. pupt.2018.08.001.
  4. Pirozynski M., Sosnowski T.R. Inhalation devices: from basic science to practical use, innovative vs generic products. Exp Opin Drug Deliv. 2016;13(11):1559-71. doi: 10.1080/17425247.2016.1198774.
  5. Roy A., Pleasants R.A., Hess D.R. Aerosol Delivery Devices for Obstructive Lung Diseases. Respir Care. 2018;63(6):708-33. Doi: 10.4187/ respcare.06290.
  6. Белоцерковская Ю.Г Возможности клинического применения современных небулайзеров. Медицинский совет. 2020;(17):50-5.
  7. Ari A., Fink J.B. Recent advances in aerosoldevices for the delivery of inhaled medications. Exp Opin Drug Deliv. 2020;17(2):133-44. doi: 10.1080/17425247.2020.1712356.
  8. Edge R., Butcher R. Vibrating Mesh Nebulizers for Patients with Respiratory Conditions: Clinical Effectiveness, Cost-Effectiveness, and Guidelines. Ottawa: CADTH, 2019. 20 p.
  9. Kaiser S.V, Huynh T., et al. Preventing Exacerbations in Preschoolers With Recurrent Wheeze: A Metaanalysis. Pediatr. 2016;137(6):e20154496. doi: 10.1542/peds.2015-4496.
  10. Геппе Н.А. Ингаляционная небулайзерная терапия заболеваний респираторной системы Практическое руководство для врачей М., 2008. 82 с. [Geppe N.A. Inhalation nebulizer therapy of diseases of the respiratory system. Practical guide for doctors. M., 2008. 82 p. (In Russ.)].
  11. Геппе Н.А., Колосова Н.Г, Зайцева О.В., Захарова И.Н. и др. Диагностика и терапия бронхиальной астмы у детей дошкольного возраста. Место небулизированных ИГКС в терапии бронхиальной астмы и крупа. (Консенсус по результатам совета экспертов Педиатрического респираторного общества). Российский вестник перинатологии и педиатрии. 2018;63:(3):124-32.
  12. Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma (GINA). Updated 2020. URL: http://www.ginasthma.org.
  13. Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика». М., 2017. 160 с. [National program "Bronchial asthma in children. Treatment strategy and prevention". M., 2017. 160 p. (In Russ.)].
  14. Yoshihara S., Tsubaki T., Ikeda M., et al. The efficacy and safety of fluticasone/salmeterol compared to fluticasone in children younger than four years of age. Pediatr Allergy Immunol. 2019;30(2):195-203. doi: 10.1111/pai.13010.
  15. Shui-Juan Zhang, Juan-Xia Jiang, Qian-Qian Ren, et al. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway. Eur J Pharmacol. 2016;775:138-48.
  16. Ozawa K., Tamura A., Ikeda K., et al. Videomicroscopy for analysis of molecular dynamics in cells. J Pharm Biomed Anal. 1997;15(9-10):1483-88. doi: 10.1016/s0731-7085(97)00036-8.
  17. Suarez-Castanon C., Modrono-Riano G., Lopez-Vilar P, et al. Use of cold and cough medications prescribed in Primary Care clinics for children less than 14 years. Anales de Pediatri a: Publicacion Oficial de la Asociacio n Espan ola de Pediatri a (A.E.P). 2016;84(1):10-7. Doi: 10.1016/j. anpedi.2015.02.022.
  18. Овчаренко Л.С., Вертегел А.А., Андриенко Т. Гидр. Ингаляционные формы амброксола в терапии секреторно-эвакуаторных нарушений респираторного тракта при острых бронхитах у детей. Здоровье ребенка. 2014;3(54):25-8
  19. Мизерницкий Ю.Л. Клиническая эффективность муколитической терапии амброксолом у детей. Практическая пульмонология. 2019;2:84-6
  20. Kanie S., Yokohira M., Yamakawa K., et al. Suppressive effects of the expectorant drug ambroxol hydrochloride on quartz-induced lung inflammation in F344 rats. J Toxicol Pathol. 2017;30(2):153-59. doi: 10.1293/tox.2016 0050
  21. Европейские медицинские агентства. Пересмотренный отчет об оценке: лекарственные средства, содержащие амброксол и бромгексин. 2015. [European medical agencies. Revised Evaluation Report: Medicines Containing Ambroxol and Bromhexine. 2015. (In Russ.)]. URL: https://www.ema.europa.eu/en/documents/ referral/ambroxol-bromhexine-article-31-referral-pracassessment-report_ en.pdf
  22. Paleari D., Rossi G.A., et al. Ambroxol: a multifaceted molecule with additional therapeutic potentials in respiratory disorders of childhood. Published on-line: 25 Oct 2011. P 1203-121. Doi: https://doi.org/10.1517/17460441.2011.6296 46. (date of access: 10.01.2021)
  23. Deretic V, Timmins G.S. Enhancement of lung levels of antibiotics by ambroxol and bromhexine. Exp Opin Drug Metab Toxicol. 2019;15(3):213 18. doi: 10.1080/17425255.2019.1578748
  24. Yang Z., et al. Effects and mechanisms of ambroxol inhalation (Mucosolvan®) in the treatment of neonatal pneumonia. Pharmazie. 2017;72(10):604-7. Doi: 10.1691/ ph.2017.7541.
  25. Li F., Yu J., Yang H., et al. Effects of ambroxol on alginate of mature Pseudomonas aeruginosa biofilms. Curr Microbiol. 2008;57(1):1-7. doi: 10.1007/s00284-008-9142-8.
  26. Du X., Zhao C., Liu S., Su S. Value of ambroxol in the treatment of asthmatic bronchitis. Pak J. Med Sci. 2020;36(3):501-4. Doi: 10.12669/ pjms.36.3.1607.
  27. Зайцев А.А. Современный взгляд на фармакотерапию кашля. Практическая пульмонология. 2018;3:88-94.
  28. Bradfute S.B., Ye C., Clarke E.C. Ambroxol and Ciprofloxacin Show Activity Against SARS- CoV2 in Vero E6 Cells at Clinically-Relevant Concentrations. bioRxiv preprint. Doi: https://doi. org/10.1101/2020.08.11.245100.
  29. Olaleye O.A., Kaur M., Onyenaka C.C. Ambroxol Hydrochloride Inhibits the Interaction between Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein's Receptor Binding Domain and Recombinant Human ACE2. Preprint. Doi: https:// doi.org/10.1101/2020.09.13.295691 (date of access: 12.01.2021).
  30. Данные инструкций по медицинскому применению препаратов, содержащих амброксол. ГРЛС (Электронный ресурс). [Data of instructions for medical use of preparations containing ambroxol. State register of medicines (Electronic resource). (In Russ.)]. URL: https://grls.rosminzdrav.ru/grls. aspx (дата доступа/date of access: 12.01.2021).
  31. Yang C., Montgomery M. Dornase alfa for cystic fibrosis (Review). Cochrane Database Syst Rev. 2018:9(issue 9):CD001127. doi: 10.1002/14651858.CD001127.pub4.
  32. Lee S.H., Heng D., Teo J.W.P., et al. inhaled mucoactive particles with tailored architecture for enhanced aerodynamicity, stability and efficacy intern J. Pharmaceut. 2019;572:118740. doi: 10.1016/j.ijpharm.2019.118740.
  33. Thomas P., Baldwin C., Bissett B., et al. Physiotherapy management for COViD-19 in the acute hospital setting: clinical practice recommendations. J. Physiother. 2020;66(2):73-82. Doi: 10.1016/j. jphys.2020.03.011.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies