Механизмы нарушения проницаемости эпителиального барьера при воспалительных заболеваниях кишечника


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Появляется все больше свидетельств того, что повышенная проницаемость эпителиального барьера может иметь важное значение в патогенезе воспалительных заболеваний кишечника (ВЗК). В данном обзоре рассматриваются современные представления о строении эпителиального барьера и молекулярных механизмах, лежащих в основе повышенной кишечной проницаемости. Особое внимание уделено структурным изменениям плотных контактов (TJ) и адгезионных соединений (AJ) толстокишечного эпителиального барьера у пациентов ВЗК.

Полный текст

Доступ закрыт

Об авторах

Г. Н Тарасова

Ростовский государственный медицинский университет; Медико-санитарная часть МВД России по Ростовской области

Ростов-на-Дону, Россия

А. А Яковлев

Ростовский государственный медицинский университет; Медико-санитарная часть МВД России по Ростовской области

Ростов-на-Дону, Россия

А. Д Зубова

Медико-санитарная часть МВД России по Ростовской области

Ростов-на-Дону, Россия

С. М Нухова

Ростовский государственный медицинский университет; Медико-санитарная часть МВД России по Ростовской области

Ростов-на-Дону, Россия

Список литературы

  1. Spaendonk H.V., Ceuleers H., Witters L., et al. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol. 2017;23(12):2106-23. doi: 10.3748/wjg.v23. i12.2106.
  2. Bischoff S.C, Barbara G., Buurman W., et al. Intestinal permeability - a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7.
  3. Gerova V.A., Stoynov S.G., Katsarov D.S., et al. Increased intestinal permeability in inflammatory bowel diseases assessed by iohexol test. World J Gastroenterol. 2011 ;17(17):2211-15. doi: 10.3748/wjg.v17.i17.
  4. Vivinus-Nebot M., Frin-Mathy G., Bzioueche H., et al. Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut. 2014;63(5):744-52. Doi: 10.1136/ gutjnl-2012-304066.
  5. Coskun M. Intestinal epithelium in inflammatory bowel disease. Front Med (Lausanne). 2014;1:24. doi: 10.3389/fmed.2014.00024.
  6. Michielan A., D'Inca R. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators Inflamm. 2015;2015:628157. doi: 10.1155/2015/628157.
  7. Das P, Goswami P, Das T.K., et al. Comparative tight junction protein expressions in colonic Crohn's disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch. 2012;460(3):261-70. doi: 10.1007/s00428-012-1195-1.
  8. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020;9:F1000 Faculty Rev-69. doi: 10.12688/f1000research.20510.1.
  9. John L.J., Fromm M., Schulzke J.D. Epithelial Barriers in Intestinal Inflammation. Antioxid Redox Signal. 2011;15(5):1255-70. Doi: 10.1089/ ars.2011.3892.
  10. Capaldo C.T., Nusrat A. Claudin switching: Physiological plasticity of the Tight Junction. Semin Cell Dev Biol. 2015;42:22-9. Doi: 10.1016/j. semcdb.2015.04.003.
  11. Barmeyer C., Schulzke J.D., Fromm M. Claudin-related intestinal diseases. Semin Cell Dev Biol. 2015;42:30-8. Doi: 10.1016/j. semcdb.2015.05.006.
  12. Onyiah J.C., Colgan S.P Cytokine responses and epithelial function in the intestinal mucosa. Cell Mol Life Sci. 2016;73(22):4203-12. doi: 10.1007/s00018-016-2289-8.
  13. Kalla R., Ventham N.T., Kennedy N.A., et al. MicroRNAs: new players in IBD. Gut. 2015;64(3):504-17. Doi: 10.1136/ gutjnl-2014-307891.
  14. Zhou Q., Costinean S., Croce C.M., et al. MicroRNA 29 Targets Nuclear Factor-KB-Repressing Factor and Claudin 1 to Increase Intestinal Permeability. Gastroenterology. 2015;148(1):158-169.e8. doi: 10.1053/j.gastro.2014.09.037.
  15. Wang H., Chao K., Ng S.C., et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease. Genome Biol. 2016;17:58. doi: 10.1186/s13059-016-0901-8.
  16. Felwick R.K., Dingley G.J.R., Martinez-Nunez R., et al. MicroRNA23a Overexpression in Crohn's Disease Targets Tumour Necrosis Factor Alpha Inhibitor Protein 3, Increasing Sensitivity to TNF and Modifying the Epithelial Barrier. J Crohns Colitis. 2020;14(3):381-92. doi: 10.1093/ecco-jcc/jjz145.
  17. Luettig J., Rosenthal R., Barmeyer C., et al. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers. 2015;3(1-2):e977176. doi: 10.4161/21688370.2014.977176.
  18. Capaldo C.T., Farkas A.E., Hilgarth R.S. Proinflammatory cytokine-induced tight junction remodeling through dynamic self-assembly of claudins. Mol Biol Cell. 2014;25(18):2710-19. doi: 10.1091/mbc.E14-02-0773.
  19. Van Itallie C.M., Anderson J.M. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014;36:15-65. doi: 10.1016/j.semcdb.2014.08.011.
  20. Ivanov A.I. Structure and regulation of intestinal epithelial tight junctions: current concepts and unanswered questions. Adv Exp Med Biol. 2012;763:132-48. doi: 10.1007/978-1-4614-4711-5_6.
  21. Kucharzik T., Walsh S.V., Chen J., et al. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol. 2001;159(6):2001-9. 1 Doi: 0.1016/S0002-9440(10)63051-9.
  22. Luissint A.C., Nusrat A., Parkos C.A. JAM-related proteins in mucosal homeostasis and inflammation. Semin Immunopathol. 2014;36(2):211-26. doi: 10.1007/s00281-014-0421-0.
  23. Vetrano S., Rescigno M., Cera M.R., et al. Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology. 2008;135(1):173-84. doi: 10.1053/j.gastro.2008.04.002.
  24. Furuse M. Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol. 2010;2(1):a002907. doi: 10.1101/cshperspect. a002907.
  25. Ivanov A.I., Young C., Beste K.D., et al. Tumor suppressor scribble regulates assembly of tight junctions in the intestinal epithelium. Am J Pathol. 2010;176(1):134-45. Doi: 10.2353/ ajpath.2010.090220.
  26. Tan Y, Guan Y, Sun Y, et al. Correlation of Intestinal Mucosal Healing and Tight Junction Protein Expression in Ulcerative Colitis Patients. Am J Med Sci. 2019;357(3):195-204. doi: 10.1016/j.amjms.2018.11.011.
  27. Ivanov A.I., Naydenov N.G. Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. Int Rev Cell Mol Biol. 2013;303:27-99. doi: 10.1016/B978-0-12-407697-6.00002-7.
  28. Smalley-Freed W.G., Efimov A., Burnett P.E., et al. p120-catenin is essential for maintenance of barrier function and intestinal homeostasis in mice. J Clin Invest. 2010;120(6):1824-35. doi: 10.1172/JCI41414.
  29. Zhang C., Liu L.W., Sun W.J., et al. Expressions of E-cadherin, p120ctn, в-catenin and NF-kB in ulcerative colitis. J Huazhong Univ Sci Technolog Med Sci. 2015;35(3):368-73. Doi: 10.1007/ s11596-015-1439-9.
  30. Barmeyer C., Fromm M., Schulzke J.D. Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch. 2017;469(1):15-26. doi: 10.1007/s00424-016-1914-6.
  31. Ivanov A.I., Nusrat A., Parkos C.A. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell. 2004;15(1):176-88. doi: 10.1091/mbc.e03-05-0319.
  32. Capaldo C.T, Nusrat A. Cytokine regulation of tight junctions. Biochim Biophys Acta. 2009;1788(4):864-71. Doi: 10.1016/j. bbamem.2008.08.027.
  33. Smyth D, Leung G., Fernando M., et al. Reduced surface expression of epithelial E-cadherin evoked by interferon-gamma is Fyn kinase-dependent. PLoS One. 2012;7(6):e38441. Doi: 10.1371/ journal.pone.0038441.
  34. Lechuga S, Ivanov A.I. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. Biochim Biophys Acta Mol Cell Res. 2017;1864(7):1183-94. doi: 10.1016/j.bbamcr.2017.03.007.
  35. Rodrfguez-Feo J.A., Puerto M., Fernandez-Mena C., et al. A new role for reticulon-4B/NOGO-B in the intestinal epithelial barrier function and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2015;308(12):G981-93. doi: 10.1152/ajpgi.00309.2014.
  36. Naydenov N.G., Harris G., Brown B., et al. Loss of soluble N-ethylmaleimide-sensitive factor attachment protein a (aSNAP) induces epithelial cell apoptosis via down-regulation of Bcl-2 expression and disruption of the Golgi. J Biol Chem. 2012;287(8):5928-41. Doi: 10.1074/ jbc.M111.278358.
  37. Naydenov N.G., Brown B., Harris G. A membrane fusion protein aSNAP is a novel regulator of epithelial apical junctions. PLoS One. 2012;7(4):e34320. doi: 10.1371/journal.pone.0034320.
  38. Baranwal S., Naydenov N.G., Harris G., Nonredundant roles of cytoplasmic в- and y-actin isoforms in regulation of epithelial apical junctions. Mol Biol Cell. 2012;23(18):3542-53. doi: 10.1091/mbc.E12-02-0162.
  39. Ivanov A.I., Parkos C.A., Nusrat A. Cytoskeletal Regulation of Epithelial Barrier Function During Inflammation. Am J Pathol. 2010;177(2):512-24. doi: 10.2353/ajpath.2010.100168.
  40. Lechuga S., Baranwal S., Ivanov A.I. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions. Am J Physiol Gastrointest Liver Physiol. 2015;308(9):G745-56. Doi: 10.1152/ ajpgi.00446.2014.
  41. Bernadskaya Y.Y, Patel F.B., Hsu H.T., et al. Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins. Mol Biol Cell. 2011;22(16):2886-99. doi: 10.1091/mbc. E10-10-0862.
  42. Zhou K., Sumigray K.D., Lechler T The Arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine. Mol Biol Cell. 2015;26(11):1995-2004. doi: 10.1091/mbc.E14-10-1481.
  43. Wang D., Naydenov N.G., Feygin A., et al. Actin-Depolymerizing Factor and Cofilin-1 Have Unique and Overlapping Functions in Regulating Intestinal Epithelial Junctions and Mucosal Inflammation. Am J Pathol. 2016;186(4):844-58. Doi: 10.1016/j. ajpath.2015.11.023.
  44. Naydenov N.G., Feygin A., Wang D., et al. Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis. Sci Rep. 2016;6:24161. doi: 10.1038/srep24161.
  45. Wang F, Graham W.V, Wang Y, et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol. 2005;166(2):409-19. doi: 10.1016/s0002-9440(10)62264-x.
  46. Blair S.A., Kane S.V, Clayburgh D.R., et al. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest. 2006;86(2):191-201. Doi: 10.1038/ labinvest.3700373.
  47. Citalan-Madrid A.F., Garcfa-Ponce A., Vargas-Robles H., et al. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers. 2013;1(5):e26938. doi: 10.4161/tisb.26938.
  48. Rodgers L.S., Fanning A.S. Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton (Hoboken). 2011;68(12):653-60. doi: 10.1002/cm.20547.
  49. Melendez J., Liu M., Sampson L., et al. Cdc42 coordinates proliferation, polarity, migration, and differentiation of small intestinal epithelial cells in mice. Gastroenterology. 2013;145(4):808-19. doi: 10.1053/j.gastro. 2013.06.021.
  50. Yang Y, Ma Y, Shi C., et al. Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun. 2013;434(4):746-52. doi: 10.1016/j.bbrc.2013.03.122.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах