Type 3 diabetes mellitus: is there a chance to become famous?


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Diabetes mellitus type 3c (DM3c) develops as a result of a number of exocrine diseases of the pancreas: chronic pancreatitis, pancreatic ductal adenocarcinoma of the, hemochromatosis, cystic fibrosis, and previous pancreatic surgery. Inflammation and fibrosis in the pancreatic tissue cause damage to both endocrine and exocrine functions, resulting in decreased levels of insulin, glucagon, and exocrine function. The prevalence of DM3c reaches 5-10% among diabetic patients in developed countries. In 1.8% of adults with newly diagnosed diabetes, diabetes can be classified as type 3 diabetes, and individuals with this disease have varying degrees of exocrine and endocrine dysfunction. DM3c, or impaired glucose tolerance, develops in 25-75% of adults with chronic pancreatitis. After acute pancreatitis DM3c develops in a year in 15% of patients, and an even in greater proportion of patients - in 5 years. Pancreatitis increases the risk of pancreatic cancer in diabetic patients, and the highest risk of this cancer occurs in DM3c patients. The incidence of newly diagnosed DM varied depending on the type of surgical intervention: from 9 to 24% after pancreatoduodenal resection (PDR), 3-40% after distal and 0-14% after central pancreatectomy. The type of resection, high preoperative HbAlc and fasting glucose levels, and low pancreatic residual volume after surgery had the strongest associations with new onset DM. Three mandatory criteria for diagnosing DM3c have been identified: the presence of exocrine pancreatic insufficiency, pathological changes during its visualization (endoscopic ultrasound and other instrumental methods), and the absence of autoantibodies to DM1. Minor criteria include impaired β-cell function, low levels of fat-soluble vitamins (A, D, E, and K), lack of insulin resistance, and impaired secretion of incretins and pancreatic polypeptide. It is assumed that the gut microbiome of DM3c patients differs from that of patients with type 1 and type 2 diabetes mellitus. Early recognition of DM3c associated with pancreatic ductal adenocarcinoma improves patient survival. In the presence of unexpressed hyperglycemia and insulin resistance, the appointment of metformin should be considered, since side effects in the form of weight loss and disorders of the gastrointestinal tract are undesirable in DM3c. The main defect in DM3c is insulin deficiency; insulin which is prescribed when oral hypoglycemic therapy has failed, but it may increase the risk of malignancy in addition to weight gain and hypoglycemia. In progressive DM3c, a basal-bolus insulin regimen should be used, with attention paid to education, continuous glycemic monitoring, and the possible use of insulin pumps. Derivatives of oxyntomodulin, an incretin mimetic with an optimal ratio of the effects of activation of glucagon-like peptide-1 and the glucagon receptor, may be promising for the treatment of DM3c. With exocrine insufficiency, replacement therapy with pancreatic enzymes is recommended; treatment with a pancreatic polypeptide appears promising. Islet transplantation has become an established approach to β-cell replacement therapy for the treatment of insulin-deficient diabetes. As an alternative approach, human pluripotent stem cells can provide an unlimited number of cells with the ability to secrete insulin in response to high blood glucose levels. Beta cells, progenitors of pluripotent stem cells, are the best candidate given the availability of encapsulation technology.

Full Text

Restricted Access

About the authors

Leonid Yu. Morgunov

Peoples' Friendship University of Russia

Email: morgunov.l.y@mail.ru
Dr. Sci. (Med.), Professor, Professor at the Department of Hospital Therapy with the Course of Endocrinology, Hematology and Clinical Laboratory Diagnostics, Medical Institute

References

  1. Hart PA, Beilin M.D., Andersen D.K., et al. Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer(CPDPC). Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol Hepatol. 2016;1(3):226-37. doi: 10.1016/S2468-1253(16)30106-6.
  2. Venturi S. Cesium in Biology, Pancreatic Cancer, and Controversy in High and Low Radiation Exposure Damage-Scientific, Environmental, Geopolitical, and Economic Aspects. Int J. Environ Res Public Health. 2021;18(17):8934. doi: 10.3390/ijerph18178934.
  3. Bhattamisra S.K., Siang T.C., Rong C.Y., et al. Type-3c Diabetes Mellitus, Diabetes of Exocrine Pancreas - An Update. Curr Diabetes Rev. 2019;15(5):382-94. Doi: 10.21 74/15733998 15666190115145702.
  4. Ewald N., Bretzel R.G. Diabetes mellitus secondary to pancreatic diseases (Type 3c)-are we neglecting an important disease? Eur J. Intern Med. 2013;24(3):203-6. Doi: 10.1016/j. ejim.2012.12.017.
  5. Wynne K., Devereaux B., Dornhorst A. Diabetes of the exocrine pancreas. J. Gastroenterol Hepatol. 2019;34(2):346-54. doi: 10.1111/jgh.14451.
  6. Cui Y., Andersen D.K. Pancreatogenic diabetes: special considerations for management. Pancreatology. 2011;1 1(3):279-94. doi: 10.1159/000329188
  7. Singh V.K., Haupt M.E., Geller D.E., et al. Less common etiologies of exocrine pancreatic insufficiency. World J. Gastroenterol. 2017;23(39):7059-76. doi: 10.3748/wjg. v23. i39.7059.
  8. Petrov M.S. Post-pancreatitis diabetes mellitus: prime time for secondary disease. Eur J. Endocrinol. 2021;184(4):R137-R149. doi: 10.1530/EJE- 20-0468.
  9. Woodmansey C., McGovern A.P., McCullough K.A., et al. Incidence, Demographics, and Clinical Characteristics of Diabetes of the Exocrine Pancreas (Type 3c): A Retrospective Cohort Study. Diabetes Care. 2017;40(11):1486-93. doi: 10.2337/dc17-0542.
  10. Yadav D., Whitcomb D.C., Tang G., et al., North American Pancreatitis Studies Consortium. Autoimmunity May Explain Diabetes in a Subset of Patients with Recurrent Acute and Chronic Pancreatitis: A Pilot Study. Clin Gastroenterol Hepatol. 2021 Nov 16;S1542-3565(21)01223-24. doi: 10.1016/j.cgh.2021.11.011.
  11. Hart PA., Bradley D., Conwell D.L., et al. Diabetes following acute pancreatitis. Lancet Gastroenterol Hepatol. 2021;6(8):668-75. Doi: 10.1016/ S2468-1253(21)00019-4.
  12. Richardson A., Park W.G. Acute pancreatitis and diabetes mellitus: a review. Korean J. Intern Med. 2021;36(1):15-24. Doi: 10.3904/ kjim.2020.505.
  13. Cho J., Scragg R., Petrov M.S. Postpancreatitis Diabetes Confers Higher Risk for Pancreatic Cancer Than Type 2 Diabetes: Results from a Nationwide Cancer Registry. Diabetes Care. 2020;43(9):2106-12. doi: 10.2337/dc20-0207.
  14. Scholten L., Mungroop T.H., Haijtink S.A.L., et al. New-onset diabetes after pancreatoduodenectomy: A systematic review and meta-analysis. Surgery. 2018 May 17, S0039-6060(18)30081-3. Doi: 10.1016/j. surg.2018.01.024.
  15. Wu L., Nahm C.B., Jamieson N.B., et al. Risk factors for development of diabetes mellitus (Type 3c) after partial pancreatectomy: A systematic review. Clin Endocrinol (Oxf). 2020;92(5):396-406. doi: 10.1111/cen.14168.18.
  16. Yu J., Sun R., Han X., Liu Z. New-Onset Diabetes Mellitus After Distal Pancreatectomy: A Systematic Review and Meta-Analysis. J. Laparoendosc Adv Surg Tech A.2020;30(11):1215-22. doi: 10.1089/lap.2020.0090.
  17. Malka D., Hammel P., Sauvanet A., et al. Risk factors for diabetes mellitus in chronic pancreatitis. Gastroenterology. 2000;119(5):1324-32. doi: 10.1053/gast.2000.19286.
  18. Melki G., Laham L., Karim G., et al. Chronic Pancreatitis Leading to Pancreatogenic Diabetes Presenting in Diabetic Ketoacidosis: A Rare Entity. Gastroenterology Res. 2019;12(4):208-210. doi: 10.14740/gr1203.
  19. Ewald N., Hardt PD. Diagnosis and treatment of diabetes mellitus in chronic pancreatitis. World J. Gastroenterol. 2013;19(42):7276-81. doi: 10.3748/wjg.v19.i42.72 76.
  20. Chakravarthy M.D., Thangaraj P., Saraswathi S. Missed Case of Pancreatogenic Diabetes Diagnosed Using Ultrasound. J. Med Ultrasound. 2021;29(3):218-20. doi: 10.4103/JMU. JMU_138_20.
  21. Talukdar R., Sarkar P., Jakkampudi A., et al. The gut microbiome in pancreatogenic diabetes differs from that of Type 1 and Type 2 diabetes. Sci Rep. 2021;11(1):10978. doi: 10.1038/s41598-021-90024-w.
  22. Kempeneers M.A., Issa Y., Ali U.A., et al, Dutch Pancreatitis Study Group. A Classification Algorithm for Types of Diabetes in Chronic Pancreatitis Using Epidemiological Characteristics: Outcome of a Longitudinal Cohort Study. Pancreas. 2021;50(10): 1407-14. Doi: 10.1097/ MPA.0000000000001937.
  23. Rickels M.R., Bellin M., Toledo F.G.S., et al.; Pancreas Fest Recommendation Conference Participants. Detection, evaluation and treatment of diabetes mellitus in chronic pancreatitis: recommendations from PancreasFest 2012. Pancreatology. 2013;13(4):336-42. doi: 10.1016/j.pan.2013.05.002
  24. Nagpal S.J.S., Bamlet W.R., Kudva Y.C., Chari S.T. Comparison of Fasting Human Pancreatic Polypeptide Levels Among Patients with Pancreatic Ductal Adenocarcinoma, Chronic Pancreatitis, and Type 2 Diabetes Mellitus. Pancreas. 2018;47(6):738-41. Doi: 10.1097/ MPA.0000000000001077.
  25. Donovan A.L., Furlan A., Borhan A.A., et al. Evaluation of clinical and imaging biomarkers for the prediction of new onset diabetes following pancreatic resection. 2021;46(6):2628-36. doi: 10.1007/s00261-020-02943-3.
  26. Oldfield L., Evans A., Rao R.G., et al. Blood levels of adiponectin and IL-1Ra distinguish type 3c from type 2 diabetes: Implications for earlier pancreatic cancer detection in new-onset diabetes. EBioMedicine. 2022;75:103802. doi: 10.1016/j.ebiom.2021.103802.
  27. Sliwinska-Mosson M., Milnerowicz S., Milnerowicz H. Diabetes mellitus secondary to pancreatic diseases (type 3c): The effect of smoking on the exocrine-endocrine interactions of the pancreas. Diab Vasc Dis Res. 2018;15(3):243-59. doi: 10.1177/1479164118764062.
  28. Duggan S.N., O'Connor D.B., Antanaitis A., et al. Metabolic dysfunction and diabetes mellitus during long-term follow-up of severe acute pancreatitis: A case-matched study. Pancreatolog. 2020;20(5):813-21. Doi: 10.1016/j. pan.2020.03.016.
  29. Yoon B.H., Ang S.M., Alabd A., et al. Pancreatic Cancer-Associated Diabetes is Clinically Distinguishable from Conventional Diabetes. J. Surg Res. 2021;261:215-25. Doi: 10.1016/j. jss.2020.12.015.
  30. Lin Y.K., Johnston PC., Arce K., Hatipoglu B.A. Chronic Pancreatitis and Diabetes Mellitus. Curr Treat Options Gastroenterol. 201513(3):319-31. doi: 10.1007/s11938-015-0055-x.
  31. Johnston PC., Thompson J., Mckee A., et al. Diabetes and Chronic Pancreatitis: Considerations in the Holistic Management of an Often-Neglected Disease. J. Diabetes Res. 2019;2019:2487804. doi: 10.1155/2019/2487804.
  32. Petrov M.S. Post-pancreatitis diabetes mellitus: investigational drugs in preclinical and clinical development and therapeutic implications. Expert Opin Investig Drugs. 2021;30(7):737-47. doi: 10.1080/13543784.2021.1931118
  33. Ramalho G.X., Dytz M.G. Diabetes of the Exocrine Pancreas Related to Hereditary Pancreatitis, an Update. Curr Diab Rep. 2020;20(6):16. doi: 10.1007/s11892-020-01299-8
  34. Cho J., Scragg R., Pandol S.J., et al. Antidiabetic Medications and Mortality Risk in Individuals with Pancreatic Cancer-Related Diabetes and Postpancreatitis Diabetes: A Nationwide Cohort Study. Diabetes Care. 2019;42(9):1675-83. doi: 10.2337/dc19-0145
  35. Lin Y.K., Faiman C., Johnston PC., et al. Spontaneous hypoglycemia after islet autotransplantation for chronic pancreatitis. J Clin Endocrinol & Metab. 2016;101(10):3669-75. doi: 10.1210/jc.2016-2111.
  36. Rickels M.R., Robertson R.P Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev. 2019;40(2):631-68. doi: 10.1210/er.2018-00154.
  37. Memon B., Abdelalim E.M. Stem Cell Therapy for Diabetes: Beta cells versus pancreatic rogenitors. Cells. 2020;9(2):283. Doi: 10.3390/ cells9020283.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies