Modern concepts of autophagy in the concept of premature aging


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

It has long been recognized that the rate of skin aging is determined by internal and external factors, but only recent advances in skin gerontology have helped to analyze the molecular and cellular processes that underlie skin aging. Some of the aging processes are triggered or enhanced by the presence of damaged molecules and organelles within cells, and their turnover is partly controlled by autophagy. In this article, we look at the contribution of autophagy to the control of premature skin aging. We propose the concept that aging is driven by changes in three categories of cells with different dependencies on autophagy. Modern protocols for the treatment of acne, rosacea and premature aging should be based on the latest scientific pathogenetic data and include injection and hardware methods. The experimental drug tested by us is definitely the procedure of choice in preparation for invasive techniques and as a tool for activating autophagy in cosmetic patients.

Keywords

Full Text

Restricted Access

About the authors

Elena V. Svechnikova

Polyclinic № 1 of the Administrative Department of the President of the Russian Federation; Novosibirsk State Medical University

Email: elene-elene@bk.ru
Dr. Sci .(Med.), Head of the Department of Dermatovenereology and Cosmetology; Professor at the Department of Dermatovenereology and Cosmetology Moscow, Russia; Novosibirsk, Russia

V. V Ashapkin

Lomonosov Moscow State University

Research Institute of Physical and Chemical Biology n.a. A.N. Belozersky Moscow, Russia

M. A Morzhanaeva

Novosibirsk State Medical University

Novosibirsk, Russia

A. G Dzukaev

Skin Expert Clinic

Moscow, Russia

References

  1. Haruna K., Suga Y., Muramatsu S., et al. Differentiation-specific expression and localization of an autophagosomal marker protein (LC3) in human epidermal keratinocytes. J Dermatol Sci. 2008;52:213-15. doi: 10.1016/j.jdermsci.2008.07.005.
  2. Hohn A, Sittig A., Jung T., et al. Lipofuscin is formed independently of macroautophagy and lysosomal activity in stress-induced prematurely senescent human fibroblasts. Free Radic Biol Med. 2012;53:1760-69. doi: 10.1016/j.freeradbiomed.2012.08.591.
  3. Hansen M, Rubinsztein D.C., Walker D.W. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018;19:579-93. doi: 10.1038/s41580-018-0033-y.
  4. Teves J.M.Y., Bhargava V., Kirwan K.R., et al. Parkinson's disease skin fibroblasts display signature alterations in growth, redox homeostasis, mitochondrial function, and autophagy. Front Neurosci. 2018;11:737. doi: 10.3389/fnins.2017.00737.
  5. McGrath J.A. The structure and function of skin in Pathology of the Skin Eds. P.H. McKee, E. Calonje, S.R. Granter, T. Brann (St Louis, MO: Elsevier). 20051. 36p.
  6. Bruckner-Tuderman L. Biology of the extracellular matrix in Dermatology. Eds. J.L. Bolognia, J.L. Jorizzl, J.V. Schaffer (St. Louis, MO: Elsevier). 2012. Р 1585-98.
  7. McGlone F., Reilly D. The cutaneous sensory system. Neurosci Biobehav Rev. 2010;34:148-59. doi: 10.1016/j.neubiorev.2009.08.004.
  8. Hansen M., Rubinsztein D.C., Walker D.W. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018;27:805-6. doi: 10.1111/exd.13731.
  9. Guinot C., Malvy D.J., Ambroisine L., et al. Relative contribution of intrinsic vs extrinsic factors to skin aging as determined by a validated skin age score. Arch Dermatol. 2002;138:1454-60.
  10. Fernandez-Flores A., Saeb-Lima M., Cassarino D.S. Histopathology of aging of the hair follicle. J Cutan Pathol. 2019;46:508-19. doi: 10.1111/cup.13467.
  11. Dufour A, Candas V. Aging and thermal responses during passive heat exposure: sweating and sensory aspects. Eur J Appl Physiol. 2007;100:19-26. doi: 10.1007/s00421-007-0396-9.
  12. Kligman A.M., Balin A.K. Aging of human skin in Aging and the Skin. Eds. A.K. Balin, A.M. Kligman. New York, NY: Raven Press, 1989.
  13. Jonason A.S., Kunala S., Price G.J., et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci U.S.A. 1996;93:14025-29. doi: 10.1073/pnas.93.24.14025.
  14. Eckhart L., Tschachler E., Gruber F. Autophagic control of skin aging. Front Cell Dev Biol. 2019;7:143. doi: 10.3389/fcell.2019.00143.
  15. Velarde M.C. Epidermal barrier protects against age-associated systemic inflammation. J Invest Dermatol. 2017;137:1206-208. doi: 10.1016/j.jid.2017.02.964.
  16. Sukseree S., Bergmann S., Pajdzik K., et al. Suppression of epithelial autophagy compromises the homeostasis of sweat glands during aging. J Invest Dermatol. 2018;138:2061-63. doi: 10.1016/j.jid.2018.03.1502.
  17. Garcia-Prat L., Martinez-Vicente M., Perdiguero E., et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42. doi: 10.1038/nature16187.
  18. Settembre C., Cinque L., Bartolomeo R., et al. Defective collagen proteostasis and matrix formation in the pathogenesis of lysosomal storage disorders. Matrix Biol. 2018;71-72:283-93. doi: 10.1016/j.matbio.2018.06.001.
  19. Velarde M.C. Epidermal barrier protects against age-associated systemic inflammation. J Invest Dermatol. 2017;137:1206-208. doi: 10.1016/j.jid.2017.02.964.
  20. Mahil S.K., Twelves S., Farkas K., et al. AP1S3 mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating IL-36 production. J Invest Dermatol. 2016;136:2251-59. doi: 10.1016/j.jid.2016.06.618.
  21. Sukseree S., Mildner M., Rossiter H., et al. Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model. PLoS One. 2012;7:e38933. doi: 10.1371/journal.pone.0038933.
  22. Yaar M., Gilchrest B.A. Ageing and photoageing of keratinocytes and melanocytes. Clin Exp Dermatol. 2001;26:583-91. doi: 10.1046/j.1365-2230.2001.00895.x.
  23. Tobin D.J. Age-related hair pigment loss. Curr Probl Dermatol. 2015;47:128-38. doi: 10.1159/000369413.
  24. Damsky W.E., Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene. 2017;36:5771-92. doi: 10.1038/onc.2017.189.
  25. Mine S., Fortunel N.O., Pageon H., Asselineau D. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS One. 2008;3:e4066. doi: 10.1371/journal.pone.0004066.
  26. Dumit V.I., Kuttner V., Kappler J., et al. Altered MCM protein levels and autophagic flux in aged and systemic sclerosis dermal fibroblasts. J Invest Dermatol. 2014;134:2321-30. doi: 10.1038/ jid.2014.69.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies