Pharmacogenetic factors of haloperidol’s safety in adolescents experiencing acute psychotic episodes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Pharmacogenetic testing is an effective method of predicting the safety of pharmacotherapy. Some antipsychotics can now be prescribed based on genotyping results - for example, haloperidol. The pharmacogenetics of haloperidol safety in adolescents with an acute psychotic episode are poorly understood at this time.

Objective. To identify pharmacogenetic predictors of adverse reactions to haloperidol in adolescents with an acute psychotic episode.

Methods. A prospective observational study included 56 adolescents diagnosed with acute polymorphic psychotic disorder. Patients were followed up for 14 days. All patients received haloperidol as their primary pharmacotherapy. Safety of psychopharmacotherapy was assessed using UKU Side Effects Rating Scale (UKU SERS), Sympson-Angus Scale (SAS), Barnes Akathisia rating scale (BARS). CYP3A4*22 (rs2740574), CYP3A5*3 (6986A>G, rs7776746), CYP2D6*4,*9 gene polymorphisms,*10 (rs3892097, rs1065852), ABCB1 1236C>T (rs1128503), 2677G>T/A (rs2032582), 3435C>T (rs1045642), COMT rs4680 (G>A - Val158Met), DRD3 rs6280 (C>T), DRD3 rs324026 (C>T), HTR2A rs6313 (T102C), ZNF804A rs1344706 (G>T), ANKS1B rs7968606 (C>T) were determined by real-time polymerase chain reaction (PCR). Results. Carriage of the COMT rs4680 polymorphism (Met allele) was associated with a lower severity of adverse psychiatric reactions. The presence of the HTR2A rs6313 and ZNF804A rs1344706 polymorphisms was significantly associated with a higher UKU SERS scale score. Carriers of the HTR2A rs6313 polymorphism variant (TC+CC genotypes) complained more frequently about the development of tremor (37.2 vs. 0%, p=0.009). Carriage of ABCB1 1236C>T and 2677G>T/A was more frequently associated with the presence of orthostatic vertigo (35 vs. 6.3%, p=0.028, due to nonequilibrium linkage, the data were the same for both polymorphic variants). The incidence of orthostatic vertigo was significantly higher in carriers of the ZNF804A rs1344706 polymorphism (37.5 vs. 12.5%; p=0.037). Carriers of the DRD3 rs6280 and rs324026 polymorphisms were less likely to develop «increased dream intensity.»

Conclusion. An increased risk of adverse reactions was observed in carriers of HTR2A rs6313 polymorphisms (TC+CC genotypes), ABCB1 1236C>T and 2677G>T/A, ZNF804A rs1344706. Carriage of COMT rs4680 (Met allele), DRD3 rs6280 and rs324026 was found to be associated with a lower severity of adverse reactions compared to «wild-type» genotypes.

Full Text

Restricted Access

About the authors

Dmitry V. Ivashchenko

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: dvi1991@yandex.ru
ORCID iD: 0000-0002-2295-7167

Dr. Sci. (Med.), Acting head Department of Child Psychiatry and Psychotherapy, Leading Researcher, Research Institute of Molecular and Personalized Therapy

Russian Federation, Moscow

A. Yu. Kravchenko

Penza State University

Email: dvi1991@yandex.ru
ORCID iD: 0009-0006-2173-657X

Medical Institute

Russian Federation, Penza

S. Z. Khoang

Mental Health Research Center

Email: dvi1991@yandex.ru
ORCID iD: 0000-0002-1647-2788
Russian Federation, Moscow

N. I. Buromskaya

Scientific-Practical Childrens and Adolescents Mental Health Center n.a. G.E. Sukhareva

Email: dvi1991@yandex.ru
ORCID iD: 0000-0003-0991-4960
Russian Federation, Moscow

P. V. Shimanov

Scientific-Practical Childrens and Adolescents Mental Health Center n.a. G.E. Sukhareva

Email: dvi1991@yandex.ru
ORCID iD: 0000-0002-9050-4776
Russian Federation, Moscow

R. V. Deitch

Scientific-Practical Childrens and Adolescents Mental Health Center n.a. G.E. Sukhareva

Email: dvi1991@yandex.ru
Russian Federation, Moscow

M. I. Nastovich

Scientific-Practical Childrens and Adolescents Mental Health Center n.a. G.E. Sukhareva

Email: dvi1991@yandex.ru
ORCID iD: 0000-0002-7727-7839
Russian Federation, Moscow

K. A. Akmalova

Russian Medical Academy of Continuous Professional Education

Email: dvi1991@yandex.ru
ORCID iD: 0000-0003-3505-8520
Russian Federation, Moscow

A. A. Kachanova

Russian Medical Academy of Continuous Professional Education

Email: dvi1991@yandex.ru
ORCID iD: 0000-0003-3194-4410
Russian Federation, Moscow

L. M. Savchenko

Russian Medical Academy of Continuous Professional Education

Email: dvi1991@yandex.ru
ORCID iD: 0000-0002-2411-3494
Russian Federation, Moscow

Yu. S. Shevchenko

Russian Medical Academy of Continuous Professional Education

Email: dvi1991@yandex.ru
ORCID iD: 0000-0001-7790-9595
Russian Federation, Moscow

D. A. Sychev

Russian Medical Academy of Continuous Professional Education

Email: dvi1991@yandex.ru
ORCID iD: 0000-0002-4496-3680
Russian Federation, Moscow

References

  1. Sakamoto K. Categorical and dimensional diagnostic approach to acute psychosis in view of operational diagnostic criteria. Seishin Shinkeigaku Zasshi. 2011;113(12):1228–34. Japanese.
  2. Lieberman J.A., Small S.A., Girgis R.R. Early Detection and Preventive Intervention in Schizophrenia: From Fantasy to Reality. Am J Psychiatry. 2019;176(10):794–810. doi: 10.1176/appi.ajp.2019.19080865.
  3. Thomas S.P., Nandhra H.S., Singh S.P. Pharmacologic treatment of first-episode schizophrenia: a review of the literature. Prim Care Companion CNS Disord. 2012;14(1). doi: 10.4088/PCC.11r01198.
  4. de Araujo A.N., de Sena E.P., de Oliveira I.R., Juruena M.F. Antipsychotic agents: efficacy and safety in schizophrenia. Drug Healthc Patient Saf. 2012;4:173–80. doi: 10.2147/DHPS.S37429.
  5. Hanafi I., et al. Haloperidol (route of administration) for people with schizophrenia. Cochrane Database of Systematic Reviews. 2017. doi: 10.1002/14651858.CD012833.
  6. Kishi T., Ikuta T., Matsunaga S., et al. Comparative efficacy and safety of antipsychotics in the treatment of schizophrenia: a network meta-analysis in a Japanese population. Neuropsychiatr Dis Treat. 2017;11;13:1281–302. doi: 10.2147/NDT.S134340.
  7. Adams C.E., Bergman H., Irving C.B., Lawrie S. Haloperidol versus placebo for schizophrenia. Cochrane Database Syst Rev. 2013;(11):CD003082. doi: 10.1002/14651858.
  8. van Westrhenen R., Aitchison K.J., Ingelman-Sundberg M., Jukic M.M. Pharmacogenomics of Antidepressant and Antipsychotic Treatment: How Far Have We Got and Where Are We Going? Front Psychiatry. 2020;11:94. doi: 10.3389/fpsyt.2020.00094.
  9. Zhang J.P., Malhotra A.K. Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol. 2011;7(1):9–37. doi: 10.1517/17425255.2011.532787.
  10. Ayano G., Psychotropic Medications Metabolized by Cytochromes P450 (CYP) 2D6 Enzyme and Relevant Drug Interactions. Clin. Pharmacol. Biopharm. 2016;5:4. doi: 10.4172/2167-065x.1000162.
  11. Saiz-Rodriguez M., et al. Effect of ABCB1 C3435T Polymorphism on Pharmacokinetics of Antipsychotics and Antidepressants. Basic Clin Pharmacol Toxicol. 2018;123(4):474–85. doi: 10.1111/bcpt.13031.
  12. Zastrozhin M. S., et al. Association between polymorphism gene ABCB1, encodes glycoprotein P, and efficacy and safety profile of haloperidol in patients with alcohol addiction. Rudn J Med. 2017;21(1):42–50 doi: 10.22363/2313-0245-2017-21-1-42-50.
  13. Tardy M., Huhn M., Kissling W., et al. Haloperidol versus low-potency first-generation antipsychotic drugs for schizophrenia. Cochrane Database Syst Rev. 2014;9;(7):CD009268. doi: 10.1002/14651858.CD009268.pub2.
  14. Pouget J.G., Shams T.A., Tiwari A.K., Muller D.J. Pharmacogenetics and outcome with antipsychotic drugs. Dialogues Clin Neurosci. 2014;16(4):555–66. doi: 10.31887/DCNS.2014.16.4/jpouget.
  15. Tyler M.W., Zaldivar-Diez J., Haggarty S.J. Classics in Chemical Neuroscience: Haloperidol. ACS Chem Neurosci. 2017;15;8(3):444–53. doi: 10.1021/acschemneuro.7b00018.
  16. Zai C.C., De Luca V., Hwang R.W., et al. Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry. 2007;12(9):794–95. doi: 10.1038/sj.mp.4002023.
  17. Leucht S., Kane J.M., Etschel E., et al. Linking the PANSS, BPRS, and CGI: clinical implications. Neuropsychopharmacology. 2006;31(10):2318–25. doi: 10.1038/sj.npp.1301147.
  18. Yoshida K., Muller D.J. Pharmacogenetics of Antipsychotic Drug Treatment: Update and Clinical Implications. Mol Neuropsychiatry. 2020;5:1–26. doi: 10.1159/000492332.
  19. Sychev D.A., Zastrozhin M.S., Smirnov V.V., et al. The correlation between CYP2D6 isoenzyme activity and haloperidol efficacy and safety profile in patients with alcohol addiction during the exacerbation of the addiction. Pharmgenomics Pers Med. 2016;14;9:89–95. Doi: 10.2147/ PGPM.S110385.
  20. Lee J.H., Byon H.J., Choi S., et al. Safety and Efficacy of Off-label and Unlicensed Medicines in Children. J Korean Med Sci. 2018;19;33(37):e227. doi: 10.3346/jkms.2018.33.e227.
  21. Korno K.T., Aagaard L. Off-Label Prescribing of Antipsychotics in a Danish Child and Adolescent Mental Health Center: A Register-Based Study. J Res Pharm Pract. 2018;7(4):205–9. doi: 10.4103/jrpp.JRPP_18_42.
  22. Barnes T.R. The Barnes Akathisia Rating Scale--revisited. J Psychopharmacol. 2003;17(4):365–70. doi: 10.1177/0269881103174013.
  23. Zastrozhin M.S., Brodyansky V.M., Skryabin V.Y., et al. Pharmacodynamic genetic polymorphisms affect adverse drug reactions of haloperidol in patients with alcohol-use disorder. Pharmgenomics Pers Med. 2017;7;10:209–15. doi: 10.2147/PGPM.S140700.
  24. Gottesmann C. The neurochemistry of waking and sleeping mental activity: the disinhibition-dopamine hypothesis. Psychiatry Clin Neurosci. 2002;56(4):345–54. doi: 10.1046/j.1440-1819.2002.01022.x.
  25. Nocjar C., Roth B.L., Pehek E. Localization of 5-HT2A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience. 2002;111;1: 163–76. doi: 10.1016/S0306- 4522(01)00593-0.
  26. Antonio D., Diana D.R. HTR2A Gene Variants and Psychiatric Disorders: A Review of Current Literature and Selection of SNPs for Future Studies. Curr Med Chem. 2007;14;19:2053–69. doi: 10.2174/092986707781368450.
  27. Zabotina et al. Serotonin 2A receptor (HTR2A) gene polymorphisms RS6311 and RS6313 modulate mRNA and protein expression in peripheral blood leukocytes during antipsychotic administration. Tsitologiya. 2018;60(5):381–89. doi: 10.31116/tsitol.2018.05.08.
  28. Changasi A.H., Shams T.A., Pouget J.G., Muller D.J. Genetics of antipsychotic drug outcome and implications for the clinician: into the limelight. Transl Dev Psychiatry. 2014;2;1:24663. doi: 10.3402/tdp.v2.24663.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies