Modern concepts of the vaginal microbiome and its significance in the pathogenesis of bacterial vaginosis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Women’s reproductive health is closely related to a healthy vaginal microbiota. This is provided by the dominance of certain Lactobacillus types. The state of the vaginal microbiome is not fully understood. This is attributable to its evolutionary uniqueness. Animal models have a neutral pH, their microbiomes are not dominated by lactobacilli, and the concentration of vaginal glycogen and lactic acid is significantly reduced. In this regard, the experimental data are contradictory and difficult to interpret in vivo. Determining the underlying mechanisms responsible for the stability of the vaginal econiche is of great importance. It is interesting to look at bacterial vaginosis through the lens of current knowledge of the vaginal microbiome. There are gaps in our knowledge in understanding the variability and relationships of the vaginal microbiota.

全文:

受限制的访问

作者简介

Irina Afanasyeva

Irkutsk State Medical University

编辑信件的主要联系方式.
Email: irishaaf@yandex.ru
ORCID iD: 0000-0001-5425-2826

Cand. Sci (Med.), Associate Professor, Department of Dermatovenereology and Cosmetology

俄罗斯联邦, Irkutsk

I. Malova

Irkutsk State Medical University

Email: irishaaf@yandex.ru
ORCID iD: 0000-0002-5078-1955

Department of Dermatovenereology and Cosmetology

俄罗斯联邦, Irkutsk

参考

  1. Callaway E. Mum’s microbes might boost brain development of c-section babies. Nature. 2023;618(7966):659–60. doi: 10.1038/d41586-023-01972-4.
  2. Funkhouser L.J., Bordenstein S.R. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11(8):e1001631. doi: 10.1371/journal.pbio.1001631.
  3. Quercia S., Freccero F., Castagnetti C., et al. Early colonisation and temporal dynamics of the gut microbial ecosystem in Standardbred foals. Equine Vet J. 2019;51(2):231–37. doi: 10.1111/evj.12983.
  4. Lander E.S., Linton L.M., Birren B., et al. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062.
  5. Turnbaugh P.J., Ley R.E., Hamady M., et al. The human microbiome project. Nature. 2007;449(7164):804–10. doi: 10.1038/nature06244.
  6. Fettweis J.M., Serrano M.G., Sheth N.U., et al. Species-level classification of the vaginal microbiome. BMC. Genomics. 2012;13(Suppl. 8):S17. doi: 10.1186/1471-2164-13-S8-S17.
  7. Doderlein А. Die Scheidensekretuntersuchungen. Zbl Gynakol.1894;18:10–4.
  8. Schroder R. Zur Pathogenese und Klinik des vaginalen Fluors. Z Zentralbl Gynak. 1921;45:1350–61.
  9. Tachedjian G., Aldunate M., Bradshaw C.S., et al. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol. 2017;168(9–10): 782–92. doi: 10.1016/j.resmic.2017.04.001.
  10. Crucitti T. Eve’s garden: myths, legends and secrets unmasked. Res Microbiol. 2017;168(9–10):773–81. doi: 10.1016/j.resmic.2017.07.004.
  11. Garg K.B., Ganguli I., Das R., et al. Spectrum of Lactobacillus species present in healthy vagina of Indian women. Indian J Med Res. 2009;129(6):652–57.
  12. Silvester M.E., Dicks L.M. Identification of lactic acid bacteria isolated from human vaginal secretions. Antonie van Leeuwenhoek. 2003;83:117–23. doi: 10.1023/a:1023373023115.
  13. Smith S.B., Ravel J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 2017;595(2):451–63. doi: 10.1113/JP271694.
  14. Dover S.E., Aroutcheva A.A., Faro S., et al. Natural antimicrobials and their role in vaginal health: a short review. Int J Probiot Prebiot. 2008;3(4):219–30.
  15. Boris S., Suarez J.E., Vazquez F., et al. Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect Immun. 1998;66(5):1985–89. doi: 10.1128/IAI.66.5.1985-1989.1998.
  16. Ronnqvist P.D., Forsgren-Brusk U.B., Grahn-Hakansson E.E. Lactobacilli in the female genital tract in relation to other genital microbes and vaginal pH. Acta Obstet Gynecol Scand. 2006;85(6):726–35. doi: 10.1080/00016340600578357.
  17. Yaacob S.N., Wahab R.A., Misson M., et al. Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant Staphylococcus aureus. Future Microbiol. 2022;17:683–99. doi: 10.2217/fmb-2021-0256.
  18. Klebanoff S.J., Hillier S.L., Eschenbach D.A., et al. Control of the microbial flora of the vagina by H2О2-generating lactobacilli. J Infect Dis. 1991;164:94–100. doi: 10.1093/infdis/164.1.94.
  19. O’Hanlon D.E., Lanier B.R., Moench T.R., et al. Cervicovaginal fluid and semen block the microbicidal activity of hydrogen peroxide produced by vaginal lactobacilli. BMC. Infect Dis. 2010;10:120. doi: 10.1186/1471-2334-10-120.
  20. Kashket E.R. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS. Microbiol Lett. 1987;46(3):233–44. Doi: org/10.1111/j.1574-6968.1987.tb02463.x.
  21. Alakomi H.L., Skytta E., Saarela M., et al. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000;66(5):2001–5. doi: 10.1128/AEM.66.5.2001-2005.2000.
  22. van de Wijgert J.H., Borgdorff H., Verhelst R., et al. The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS One. 2014;9(8):e105998. doi: 10.1371/journal.pone.0105998.
  23. Witkin S.S., Mendes-Soares H., Linhares I.M., et al. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. mBio. 2013;4(4):e00460–13. doi: 10.1128/mBio.00460-13.
  24. Nardini P., Nahui Palomino R.A., Parolin C., et al. Lactobacillus crispatus inhibits the infectivity of Chlamydia trachomatis elementary bodies, in vitro study. Sci Rep. 2016;6:29024. doi: 10.1038/srep29024.
  25. Breshears L.M., Edwards V.L., Ravel J., et al. Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC. Microbiol. 2015;15:276. doi: 10.1186/s12866-015-0608-0.
  26. Miko E., Barakonyi A. The Role of Hydrogen-Peroxide (H2O2) Produced by Vaginal Microbiota in Female Reproductive Health. Antioxidants (Basel). 2023;12(5):1055. doi: 10.3390/antiox12051055.
  27. Vaneechoutte M. The human vaginal microbial community. Res Microbiol. 2017;168(9–10):811–25. doi: 10.1016/j.resmic.2017.08.001.
  28. Spear G.T., Gilbert D., Landay A.L., et al. Pyrosequencing of the Genital Microbiotas of HIV-Seropositive and -Seronegative Women Reveals Lactobacillus Iners as the Predominant Lactobacillus Species. Appl Environ Microbiol. 2011;77(1):378–81. doi: 10.1128/AEM.00973-10.
  29. Campisciano G., Iebba V., Zito G., et al. Lactobacillus Iners and Gasseri, Prevotella Bivia and HPV Belong to the Microbiological Signature Negatively Affecting Human Reproduction. Microorganisms. 2020;9(1):39. doi: 10.3390/microorganisms9010039.
  30. Vaneechoutte M. Lactobacillus iners, the unusual suspect. Res Microbiol. 2017;168(9–10):826–36. doi: 10.1016/j.resmic.2017.09.003.
  31. France M.T., Mendes-Soares H., Forney L.J. Genomic Comparisons of Lactobacillus Crispatus and Lactobacillus Iners Reveal Potential Ecological Drivers of Community Composition in the Vagina. Appl Environ Microbiol. 2016;82(24):7063–73. doi: 10.1128/AEM.02385-16.
  32. Rampersaud R., Planet P.J., Randis T.M., et al. Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J Bacteriol. 2011;193(5):1034–341. doi: 10.1128/JB.00694-10.
  33. Rampersaud R. Identification and characterization of inerolysin, the cholesterol dependent cytolysin produced by Lactobacillus iners [PhD thesis]. Columbia University. 2014.
  34. Petrova M.I., Reid G., Vaneechoutte M., et al. Lactobacillus iners: Friend or Foe? Trends Microbiol. 2017;25(3):182–91. doi: 10.1016/j.tim.2016.11.007.
  35. Jespers V., van de Wijgert J., Cools P., et al. The significance of Lactobacillus crispatus and L. vaginalis for vaginal health and the negative effect of recent sex: a cross-sectional descriptive study across groups of African women. BMC. Infect Dis. 2015;15:115. doi: 10.1186/s12879-015-0825-z.
  36. Santiago G.L., Tency I., Verstraelen H., et al. Longitudinal qPCR study of the dynamics of L. crispatus, L. iners, A. vaginae, (sialidase positive) G. vaginalis, and P. bivia in the vagina. PLoS One. 2012;7(9):e45281. doi: 10.1371/journal.pone.0045281.
  37. Jespers V., Menten J., Smet H., et al. Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic acid amplification tests. BMC. Microbiol. 2012;12:83. doi: 10.1186/1471-2180-12-83.
  38. Neggers Y.H., Nansel T.R., Andrews W.W., et al. Dietary intake of selected nutrients affects bacterial vaginosis in women. J Nutr. 2007;137(9):2128–233. doi: 10.1093/jn/137.9.2128.
  39. Oh H.Y., Kim B.S., Seo S.S., et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21(7):674.e1-9. doi: 10.1016/j.cmi.2015.02.026.
  40. Zheng N., Guo R., Wang J., et al. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review. Front Cell Infect Microbiol. 2021;11:792787. doi: 10.3389/fcimb.2021.792787.
  41. Ravel J., Gajer P., Abdo Z., et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108(Suppl. 1):4680–87. doi: 10.1073/pnas.1002611107.
  42. Yamamoto T., Zhou X., Williams C.J., et al. Bacterial populations in the vaginas of healthy adolescent women. J Pediatr Adolesc Gynecol. 2009;22(1):11–8. doi: 10.1016/j.jpag.2008.01.073.
  43. Gajer P., Brotman R.M., Bai G., et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132–52. doi: 10.1126/scitranslmed.3003605.
  44. Zhou X., Brown C.J., Abdo Z., et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J. 2007;1(2):121–33. doi: 10.1038/ismej.2007.12.
  45. Walker B.H. Biodiversity and Ecological Redundancy. Conservat Biol. 1992;6(1):18–23. doi: 10.1046/j.1523-1739.1992.610018.x.
  46. Schwebke J.R. Bacterial vaginosis – more questions than answers. Genitourin Med. 1997;73(5):333–34. doi: 10.1136/sti.73.5.333.
  47. Кира Е.Ф. Бактериальный вагиноз. М., 2012. [Kira E.F. Bacterial Vaginosis. M., 2012. (In Russ.)].
  48. Peebles K., Velloza J., Balkus J.E., et al. High global burden and costs of bacterial vaginosis: a systematic review and meta-analysis. Sex Transm Dis. 2019;46:304–11. doi: 10.1097/OLQ.0000000000000972.
  49. Muzny C.A., Laniewski P., Schwebke J.R., et al. Host-vaginal microbiota interactions in the pathogenesis of bacterial vaginosis. Curr Opin Infect Dis. 2020;33(1):59–65. doi: 10.1097/QCO.0000000000000620.
  50. Schwebke J.R., Muzny C.A., Josey W.E. Role of Gardnerella vaginalis in the pathogenesis of bacterial vaginosis: a conceptual model. J Infect Dis. 2014;210(3):338–43. doi: 10.1093/infdis/jiu089.
  51. Swidsinski A., Mendling W., Loening-Baucke V., et al. An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol. 2008;198(1):97.e1-97.e976. doi: 10.1016/j.ajog.2007.06.039.
  52. Ratten L.K., Plummer E.L., Murray G.L., et al. Sex is associated with the persistence of non-optimal vaginal microbiota following treatment for bacterial vaginosis: a prospective cohort study. BJOG. 2021;128(4):756–67. doi: 10.1111/1471-0528.16430.
  53. Sobel J.D. Recurrent bacterial vaginosis, relapse or reinfection: the role of sexual transmission. BJOG. 2021;128(4):768. doi: 10.1111/1471-0528.16471.
  54. Swidsinski A., Doerffel Y., Loening-Baucke V., et al. Gardnerella biofilm involves females and males and is transmitted sexually. Gynecol Obstet Invest. 2010;70(4):256–63. doi: 10.1159/000314015.
  55. Bradshaw C.S., Vodstrcil L.A., Hocking J.S., et al. Recurrence of bacterial vaginosis is significantly associated with posttreatment sexual activities and hormonal contraceptive use. Clin Infect Dis. 2013;56(6):777–86. doi: 10.1093/cid/cis1030.
  56. Vodstrcil L.A., Plummer M.E., Fairley C.K., et al. Combined oral contraceptive pill-exposure alone does not reduce the risk of bacterial vaginosis recurrence in a pilot randomised controlled trial. Sci Rep. 2019;9(1):3555. doi: 10.1038/s41598-019-39879-8.
  57. Sobel J.D., Kaur N., Woznicki N.A., et al. Conventional oral and secondary high dose vaginal metronidazole therapy for recurrent bacterial vaginosis: clinical outcomes, impacts of sex and menses. Infect Drug Resist. 2019;12:2297–307. doi: 10.2147/IDR.S213853.
  58. Toh E., Xing Y., Gao X., et al. Sexual behavior shapes male genitourinary microbiome composition. Cell Rep Med. 2023;4(3):100981. doi: 10.1016/j.xcrm.2023.100981.
  59. Amabebe E., Anumba D.O.C. Mechanistic Insights into Immune Suppression and Evasion in Bacterial Vaginosis. Curr Microbiol. 2022;79(3):84. doi: 10.1007/s00284-022-02771-2.
  60. Cauci S., Guaschino S., De Aloysio D., et al. Interrelationships of interleukin-8 with interleukin-1beta and neutrophils in vaginal fluid of healthy and bacterial vaginosis positive women. Mol Hum Reprod. 2003;9(1):53–8. doi: 10.1093/molehr/gag003.
  61. Hedges S.R., Barrientes F., Desmond R.A., et al. Local and systemic cytokine levels in relation to changes in vaginal flora. J Infect Dis. 2006;193(4):556–62. doi: 10.1086/499824.
  62. Doerflinger S.Y., Throop A.L., Herbst-Kralovetz M.M. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis. 2014;209(12):1989–99. doi: 10.1093/infdis/jiu004.
  63. Amabebe E., Anumba D.O.C. Female Gut and Genital Tract Microbiota-Induced Crosstalk and Differential Effects of Short-Chain Fatty Acids on Immune Sequelae. Front. Immunol. 2020;11:2184. doi: 10.3389/fimmu.2020.02184.
  64. Gardner H.L., Dukes C.D. Haemophilus vaginalis vaginitis: a newly defined specific infection previously classified non-specific vaginitis. Am J Obstet Gynecol. 1955;69:962–76. doi: 10.1016/0002-9378(55)90095-8.
  65. Muzny C.A., Schwebke J.R. Gardnerella vaginalis: Still a Prime Suspect in the Pathogenesis of Bacterial Vaginosis. Curr Infect Dis Rep. 2013;15(2):130–35. doi: 10.1007/s11908-013-0318-4.
  66. Mehta S.D., Zhao D., Green S.J., et al. The Microbiome Composition of a Man’s Penis Predicts Incident Bacterial Vaginosis in His Female Sex Partner With High Accuracy. Front Cell Infect Microbiol. 2020;10:433. doi: 10.3389/fcimb.2020.00433.
  67. Hill J.E., Albert A.Y.K., Group V.R. Resolution and cooccurrence patterns of Gardnerella leopoldii, G. swidsinskii, G. piotii, and G. vaginalis within the vaginal microbiome. Infect Immun. 2019; 87:e00532-19. doi: 10.1128/IAI.00532-19.
  68. Shipitsyna E., Krysanova A., Khayrullina G., et al. Quantitation of all Four Gardnerella vaginalis Clades Detects Abnormal Vaginal Microbiota Characteristic of Bacterial Vaginosis More Accurately than Putative G. vaginalis Sialidase A Gene Count. Mol Diagn Ther. 2019;23(1):139–47. doi: 10.1007/s40291-019-00382-5.
  69. Swidsinski A., Mendling W., Loening-Baucke V., et al. Adherent biofilms in bacterial vaginosis. Obstet Gynecol. 2005;106(5 Pt. 1):1013–23. doi: 10.1097/01.AOG.0000183594.45524.d2.
  70. Gottschick C., Szafranski S.P., Kunze B., et al. Screening of Compounds against Gardnerella vaginalis Biofilms. PLoS One. 2016;11(4):e0154086. doi: 10.1371/journal.pone.0154086.
  71. Patterson J.L., Girerd P.H., Karjane N.W., et al. Effect of biofilm phenotype on resistance of Gardnerella vaginalis to hydrogen peroxide and lactic acid. Am J Obstet Gynecol. 2007;197:170.e1–7. doi: 10.1016/j.ajog.2007.02.027.

补充文件

附件文件
动作
1. JATS XML
##common.cookie##