Primary resistance to anti-HER2 therapy: mechanisms of development and ways to overcome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Breast cancer (BC) is the most common tumor in women. Human epidermal growth factor receptor type 2 (HER2) – positive tumors account for approximately 25–30% of all breast cancer subtypes and are correlated with a poor prognosis. Trastuzumab, a monoclonal antibody, has been used for many years to inhibit HER2 activity. The introduction of this drug into clinical practice has made a real revolution in the world of treatment of HER2-positive breast cancer. However, today there are cases of primary resistance to anti-HER2 therapy. In this regard, identifying mechanisms of resistance and exploring new therapeutic agents may lead to the development of more effective blockade of HER family receptor signaling. Over the past few years, many mechanisms of resistance have been studied, and attempts to introduce new therapeutic drugs to treat patients with resistance to trastuzumab-containing therapy are regularly made, but adequate effectiveness has not been achieved to date. In this regard, the purpose of this article was to review the mechanisms of resistance to anti-HER2 therapy and ways to overcome it, as well as demonstrate clinical experience in managing a patient with a similar condition.

Full Text

Restricted Access

About the authors

G. A. Dashyan

Akhmedov, A.E. Tyusenko, A.A. Olchonova, Z.V. Dyakonenko, O.A. Sereda, A.M. Belousov
Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Author for correspondence.
Email: dgarik@mail.ru
ORCID iD: 0000-0001-6183-9764
SPIN-code: 6989-7148
Scopus Author ID: 17344871400

Dr. Sci. (Med.), Head of the Oncology Department № 1 (surgical methods for the treatment of tumors of the breast, skin and soft tissues)

Russian Federation, St. Petersburg

E. S. Dzhelialov

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
ORCID iD: 0000-0002-2571-243X
SPIN-code: 7261-2325
Russian Federation, St. Petersburg

V. V. Konstantinova

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
ORCID iD: 0000-0001-9650-7305
Russian Federation, St. Petersburg

Yu. A. Gronskaya

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
ORCID iD: 0000-0002-1060-0806
Russian Federation, St. Petersburg

A. D. Murskikh

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
ORCID iD: 0009-0006-1825-6196
SPIN-code: 5837-5887
Russian Federation, St. Petersburg

R. M. Akhmedov

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
ORCID iD: 0000-0003-3348-4251
Russian Federation, St. Petersburg

A. E. Tyusenko

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
ORCID iD: 0000-0003-0689-6058
SPIN-code: 9223-5741
Russian Federation, St. Petersburg

A. A. Olchonova

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
Russian Federation, St. Petersburg

Z. V. Dyakonenko

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
ORCID iD: 0009-0003-1287-8048
SPIN-code: 7767-1149
Russian Federation, St. Petersburg

O. A. Sereda

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
ORCID iD: 0000-0001-7553-2026
Russian Federation, St. Petersburg

A. M. Belousov

Clinic of High Medical Technologies n.a. N.I. Pirogov, St. Petersburg State University

Email: dgarik@mail.ru
ORCID iD: 0000-0002-2274-8170
Russian Federation, St. Petersburg

References

  1. Sung H., Ferlay J., Siegel R.L., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer J Clin. 2021;71(3):209–49. doi: 10.3322/caac.21660.
  2. Majeed W., Aslam B., Javed I., et al. Breast Cancer: Major Risk Factors and Recent Developments in Treatment. Asian Pacific J Cancer Prevent. 2014;15(8):3353–58. doi: 10.7314/apjcp.2014.15.8.3353.
  3. Zainal N.Z., Nik-Jaafar N.R., Baharudin A., et al. Prevalence of Depression in Breast Cancer Survivors: a Systematic Review of Observational Studies. Asian Pacific J Cancer Prevent. 2013;14(4):2649–56. doi: 10.7314/apjcp.2013.14.4.2649.
  4. Sun Y.-S., Zhao Z., Yang Z.-N., et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13(11):1387–97. doi: 10.7150/ijbs.21635.
  5. Weigelt B., Geyer F.C., Reis-Filho J.S. Histological types of breast cancer: How special are they? Mol. Oncol. 2010;4(3):192–208. doi: 10.1016/j.molonc.2010.04.004.
  6. Barzaman K., Karami J., Zarei Z., et al. Breast cancer: Biology, biomarkers, and treatments. International Immunopharmacol. 2020;84(106535):106535. doi: 10.1016/j.intimp.2020.106535.
  7. Boyle P. Triple-negative breast cancer: epidemiological considerations and recommendations. Ann. Oncol. 2012;23:vi7–12. doi: 10.1093/annonc/mds187.
  8. Derakhshan F., Reis-Filho J.S. Pathogenesis of Triple-Negative Breast Cancer. Annual Review of Pathology: Mechanisms Dis. 2022;17(1):181–204. doi: 10.1146/annurev-pathol-042420-093238.
  9. Slamon D.J., Godolphin W., Jones L.A., et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science (New York, NY). 1989;244(4905):707–12. doi: 10.1126/science.2470152.
  10. Slamon D.J., Leyland-Jones B., Shak S., et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N Engl J Med. 2001;344(11):783–92. doi: 10.1056/nejm200103153441101.
  11. Cobleigh M.A., Vogel C.L., Tripathy D., et al. Multinational Study of the Efficacy and Safety of Humanized Anti-HER2 Monoclonal Antibody in Women Who Have HER2-Overexpressing Metastatic Breast Cancer That Has Progressed After Chemotherapy for Metastatic Disease. J Clin Oncol. 1999;17(9):2639–39. doi: 10.1200/jco.1999.17.9.2639.
  12. Moasser M.M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469–87. doi: 10.1038/sj.onc.1210477.
  13. Arteaga C.L., Sliwkowski M.X., Osborne C.K., et al. Treatment of HER2-positive breast cancer: current status and future perspectives. Nature Rev Clin Oncol. 2012;9(1):16–32. doi: 10.1038/nrclinonc.2011.177.
  14. Sauter G., Lee J., Bartlett J.M.S., et al. Guidelines for Human Epidermal Growth Factor Receptor 2 Testing: Biologic and Methodologic Considerations. J Clin Oncol. 2009;27(8):1323–33. doi: 10.1200/jco.2007.14.8197.
  15. Lewis Phillips G.D., Li G., Dugger D.L., et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90. doi: 10.1158/0008-5472.CAN-08-1776.
  16. Baselga J., Gelmon K.A., Verma S., et al. Phase II Trial of Pertuzumab and Trastuzumab in Patients With Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer That Progressed During Prior Trastuzumab Therapy. J Clin Oncol. 2010;28(7):1138–44. doi: 10.1200/jco.2009.24.2024.
  17. Vogel C.L., Cobleigh M.A., Tripathy D., et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol.: Official J Am Soc Clin Oncol. 2002;20(3):719–26. doi: 10.1200/JCO.2002.20.3.719.
  18. Cameron D., Casey M., Press M.F., et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat. 2008;112(3):533–43. doi: 10.1007/s10549-007-9885-0.
  19. Miller T.W., Rexer B.N., Garrett J.T., et al. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 2011;13(6). doi: 10.1186/bcr3039.
  20. Koboldt D.C., Fulton R.S., McLellan M.D., et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi: 10.1038/nature11412.
  21. Wang Y., Liu Y., Du Y., et al. The predictive role of phosphatase and tensin homolog (PTEN) loss, phosphoinositol-3 (PI3) kinase (PIK3CA) mutation, and PI3K pathway activation in sensitivity to trastuzumab in HER2-positive breast cancer: a meta-analysis. Curr Med Res Opin. 2013;29(6):633–42. doi: 10.1185/03007995.2013.794775.
  22. Majewski I.J., Nuciforo P., Mittempergher L., et al. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol. 2015;33(12):1334–39. doi: 10.1200/JCO.2014.55.2158.
  23. Hurvitz S.A., Andre F., Jiang Z., et al. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. Lancet. Oncology. 2015;16(7):816–29. doi: 10.1016/s1470-2045(15)00051-0.
  24. Andre F., O’Regan R., Ozguroglu M., et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. Oncology. 2014;15(6):580–91. doi: 10.1016/s1470-2045(14)70138-x.
  25. Faber A.C., Corcoran R.B., Ebi H., et al. BIM Expression in Treatment-Naive Cancers Predicts Responsiveness to Kinase Inhibitors. Cancer Discov. 2011;1(4):352–65. doi: 10.1158/2159-8290.cd-11-0106.
  26. Park S.H., Ito K., Olcott W., et al. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2+ breast cancer cells by inducing Bim. Breast Cancer Res. 2015;17(1). doi: 10.1186/s13058-015-0594-z.
  27. Scaltriti M., Eichhorn P.J., Cortes J., et al. Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proceed Nat Acad Sci. 2011;108(9):3761–66. doi: 10.1073/pnas.1014835108.
  28. Antony J., Ruby Yun‐Ju Huang. AXL-Driven EMT State as a Targetable Conduit in Cancer. Cancer Res. 2017;77(14):3725–32. doi: 10.1158/0008-5472.can-17-0392.
  29. Ocana A., Amir E., Pandiella A. HER2 heterogeneity and resistance to anti-HER2 antibody-drug conjugates. Breast Cancer Res. 2020;22(1). doi: 10.1186/s13058-020-1252-7.
  30. Llombart-Cussac A., Cortes J., Pare L., et al. HER2-enriched subtype as a predictor of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer (PAMELA): an open-label, single-group, multicentre, phase 2 trial. Lancet. Oncology. 2017;18(4):545–54. doi: 10.1016/s1470-2045(17)30021-9.
  31. Davra V., Kumar S., Geng K., et al. Axl and Mertk Receptors Cooperate to Promote Breast Cancer Progression by Combined Oncogenic Signaling and Evasion of Host Antitumor Immunity. Cancer Res. 2020;81(3):698–712. doi: 10.1158/0008-5472.can-20-2066.
  32. Ji J., Ding Y., Kong Y., et al. Triple-negative breast cancer cells that survive ionizing radiation exhibit an Axl-dependent aggressive radioresistant phenotype. Exp Ther Med. 2023;26(3). doi: 10.3892/etm.2023.12147.
  33. Aaltomaa S., Lipponen P., Eskelinen M., et al. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer. 1992;28(4–5):859–64. doi: 10.1016/0959-8049(92)90134-n.
  34. Denkert C., Loibl S., Noske A., et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13. doi: 10.1200/JCO.2009.23.7370.
  35. Alderson K.L., Sondel P.M. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity. J Biomed Biotechnol. 2011;2011:1–7. doi: 10.1155/2011/379123.
  36. Ferris R.L., Jaffee E.M., Ferrone S. Tumor Antigen–Targeted, Monoclonal Antibody–Based Immunotherapy: Clinical Response, Cellular Immunity, and Immunoescape. J Clin Oncol. 2010;28(28):4390–99. doi: 10.1200/jco.2009.27.6360.
  37. Hudis C.A. Trastuzumab – Mechanism of Action and Use in Clinical Practice. N Engl J Med. 2007;357(1):39–51. doi: 10.1056/nejmra043186.
  38. Musolino A., Naldi N., Bortesi B., et al. Immunoglobulin G Fragment C Receptor Polymorphisms and Clinical Efficacy of Trastuzumab-Based Therapy in Patients With HER-2/neu-Positive Metastatic Breast Cancer. J Clin Oncol. 2008;26(11):1789–96. doi: 10.1200/jco.2007.14.8957.
  39. DiGiovanna M.P., Stern D.F., Edgerton S.M., et al. Relationship of Epidermal Growth Factor Receptor Expression to ErbB-2 Signaling Activity and Prognosis in Breast Cancer Patients. J Clin Oncol. 2005;23(6):1152–60. doi: 10.1200/jco.2005.09.055.
  40. Moulder S.L., F. Yakes M., Muthuswamy S.K., et al. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. 2001;61(24):8887–95.
  41. Surmacz E. Growth factor receptors as therapeutic targets: strategies to inhibit the insulin-like growth factor I receptor. Oncogene. 2003;22(42):6589–97. doi: 10.1038/sj.onc.1206772.
  42. Hartog H., Wesseling J., Boezen H.M., et al. The insulin-like growth factor 1 receptor in cancer: Old focus, new future. Eur J Cancer. 2007;43(13):1895–904. doi: 10.1016/j.ejca.2007.05.021.
  43. Jerome L., Shiry L., Leyland-Jones B. Deregulation of the IGF axis in cancer: epidemiological evidence and potential therapeutic interventions. Endocrine-related cancer. 2003;561–78. doi: 10.1677/erc.0.0100561.
  44. Nahta R., Yuan L.X.H., Zhang B., et al. Insulin-like Growth Factor-I Receptor/Human Epidermal Growth Factor Receptor 2 Heterodimerization Contributes to Trastuzumab Resistance of Breast Cancer Cells. Cancer Res. 2005;65(23):11118–28. doi: 10.1158/0008-5472.can-04-3841.
  45. Liu B., Fan Z., Edgerton S.M., et al. Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle. 2011;10(17):2959–66. doi: 10.4161/cc.10.17.16359.
  46. Shattuck D.L., Miller J.K., Carraway K.L., et al. Met Receptor Contributes to Trastuzumab Resistance of Her2-Overexpressing Breast Cancer Cells. Cancer Res. 2008;68(5):1471–77. doi: 10.1158/0008-5472.can-07-5962.
  47. Zhuang G., Brantley-Sieders D.M., Vaught D., et al. Elevation of Receptor Tyrosine Kinase EphA2 Mediates Resistance to Trastuzumab Therapy. Cancer Res. 2009;70(1):299–308. doi: 10.1158/0008-5472.can-09-1845.
  48. Liang K., Esteva F.J., Albarracin C., et al. Recombinant Human Erythropoietin Antagonizes Trastuzumab Treatment of Breast Cancer Cells via Jak2-Mediated Src Activation and PTEN Inactivation. Cancer Cel. 2010;18(5):423–35. doi: 10.1016/j.ccr.2010.10.025.
  49. Shi M., Liu D., Duan H., et al. The β2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res Treat. 2010;125(2):351–62. doi: 10.1007/s10549-010-0822-2.
  50. Liu D., Yang Z., Wang T., et al. β2-AR signaling controls trastuzumab resistance-dependent pathway. Oncogene. 2015;35(1):47–58. doi: 10.1038/onc.2015.58.
  51. Benz C.C., Scott G.K., Sarup J.C., et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat. 1992;24(2):85–95. doi: 10.1007/bf01961241.
  52. Gianni L., Pienkowski T., Im Y.-H., et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet. Oncology. 2012;13(1):25–32. doi: 10.1016/S1470-2045(11)70336-9.
  53. Lee A.V., Cui X., Oesterreich S. Cross-talk among estrogen receptor, epidermal growth factor, and insulin-like growth factor signaling in breast cancer. 2001;7(Suppl. 12):s4429–35.
  54. Kahlert S., Nuedling S., van Eickels M., et al. Estrogen Receptor α Rapidly Activates the IGF-1 Receptor Pathway. J Biol Chemistry. 2000;275(24):18447–53. doi: 10.1074/jbc.m910345199.
  55. Prat A., Baselga J. The role of hormonal therapy in the management of hormonal-receptor-positive breast cancer with co-expression of HER2. Nature Clin Pract Oncol. 2008;5(9):531–42. doi: 10.1038/ncponc1179.
  56. Arpino G., Wiechmann L., Osborne C.K., et al. Crosstalk between the Estrogen Receptor and the HER Tyrosine Kinase Receptor Family: Molecular Mechanism and Clinical Implications for Endocrine Therapy Resistance. Endocrine Rev. 2008;29(2):217–33. doi: 10.1210/er.2006-0045.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies