Species diversity of the vaginal microbiota and local immune status in patients with recurrent bacterial vaginosis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Background. Currently, there is a high frequency of relapses of bacterial vaginosis (BV) more than 50% within 3–6 months and from 69 to 80% of follow-up within 12 months after treatment.

Objective. Evaluation of the features of nonspecific vaginal protection in patients with recurrent BV (RBV) infected with the herpes simplex virus (HSV).

Methods. The study included 100 patients, divided into 2 groups: I (n=80) – with a clinical diagnosis of RBV and HSV, II (n=20) – conditionally healthy. The bacterial composition in vaginal discharge was determined using real-time polymerase chain reaction and the content of interleukin-1β (IL-1β), IL-2, -6, -8, interferon γ, tumor necrosis factor α (TNF-α), IL4, -10 in vaginal secretions – by enzyme immunoassay.

Results. Gardnerella vaginalis, Prevotella bivia and Atopobium vaginae were most often isolated (83.8%); Megasphaera spp., Mobiluncus spp. (66.3%) and Staphylococcus spp. (32.5%) were found in most patients, other BV-associated bacteria (Eubacterium spp., Sneathia spp., Leptotrichia spp., Fusobacterium spp., Lachnobacterium spp., Clostridium spp.) were also isolated from more than 50% of patients. The most common HSV in patients with BV was HSV type 2 – 85%; a combination with human papillomavirus (HPV) was detected in 66.3% and a combination of different types of herpes viruses in 55%. Statistically significant high levels of cytokines were revealed in patients with RBV infected with HSV, compared to women with normal vaginal microbiocenosis: IL-1β – by 1.8 times, IL-6 – 1.7 times, TNF-α – 1.5 times (p<0.001) and IL-8 – by 1.4 times, IL-4 – by1.4 times, IL-10 – by 1.6 times (P<0.01).

Conclusion. In patients with RBV infected with HSV, there is a species diversity of microflora, including Staphylococcus spp. and a combination of herpes viruses and HPV in addition to anaerobic bacteria, increasing the level of cytokines. This justifies the need for complex treatment using not only antimicrobial drugs, but also immunomodulatory agents.

全文:

受限制的访问

作者简介

B. Aisaeva

Dagestan State Medical University

编辑信件的主要联系方式.
Email: aysaevabakhu1995@mail.ru
ORCID iD: 0000-0002-9334-9978

Teaching Assistant at the Department of Medical Simulation and Educational Practice

俄罗斯联邦, Makhachkala, Republic of Dagestan

G. Dikke

F.I. Inozemtsev Academy of Medical Education

Email: pharmateca@yandex.ru
ORCID iD: 0000-0001-9524-8962
俄罗斯联邦, St. Petersburg

Z. Abusueva

Dagestan State Medical University; Makhachkala Maternity Hospital № 2

Email: pharmateca@yandex.ru
ORCID iD: 0000-0002-7729-1606
俄罗斯联邦, Makhachkala, Republic of Dagestan; Makhachkala, Republic of Dagestan

P. Gitinova

Serpukhov City Hospital n.a. N.A. Semashko

Email: pharmateca@yandex.ru
ORCID iD: 0009-0005-9947-0815
俄罗斯联邦, Moscow region, Serpukhov

参考

  1. Coudray M.S., Madhivanan P. Bacterial vaginosis-A brief synopsis of the literature. Eur J.Obstet Gynecol Reprod Biol. 2020;245:143–48. doi: 10.1016/j.ejogrb.2019.12.035.
  2. Peebles K., Velloza J., Balkus J.E., et al. High Global Burden and Costs of Bacterial Vaginosis: A Systematic Review and Meta-Analysis. Sex Transm Dis. 2019;46(5):304–11. doi: 10.1097/OLQ.0000000000000972.
  3. Ravel J., Moreno I., Simon C. Bacterial vaginosis and its association with infertility, endometritis, and pelvic inflammatory disease. Am J Obstet Gynecol. 2021;224(3):251–57. doi: 10.1016/j.ajog.2020.10.019.
  4. Tabatabaei N., Eren A.M., Barreiro L.B., et al. Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. BJOG. 2019;126(3):349–58. doi: 10.1111/1471-0528.15299.
  5. Muzny C.A., Laniewski P., Schwebke J.R., Herbst-Kralovetz M.M. Host-vaginal microbiota interactions in the pathogenesis of bacterial vaginosis. Curr Opin Infect Dis. 2020;33(1):59–65. doi: 10.1097/QCO.0000000000000620.
  6. Mtshali A., San J.E., Osman F., et al. Temporal Changes in Vaginal Microbiota and Genital Tract Cytokines Among South African Women Treated for Bacterial Vaginosis. Front Immunol. 2021;12:730986. doi: 10.3389/fimmu.2021.730986.
  7. Zhang T., Xue Y., Yue T., et al. Characteristics of aerobic vaginitis among women in Xi’an district: a hospital-based study. BMC. Womens Health. 2020;20(1):138. doi: 10.1186/s12905-020-00997-5.
  8. Qi W., Li H., Wang C., et al. Recent Advances in Presentation, Diagnosis and Treatment for Mixed Vaginitis. Front Cell Infect Microbiol. 2021;11:759795. doi: 10.3389/fcimb.2021.759795.
  9. Esber A., Vicetti Miguel R.D., Cherpes T.L., et al. Risk of bacterial vaginosis among women with herpes simplex virus type 2 infection: A Systematic Review and Meta-analysis. J Infect Dis. 2015;212(1):8–17. doi: 10.1093/infdis/jiv017.
  10. James C., Harfouche M., Welton N.J., et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020;98(5):315–29. doi: 10.2471/BLT.19.237149.
  11. Chen X., Lu Y., Chen T., Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front. Cell Infect Microbiol. 2021;11:631972. doi: 10.3389/fcimb.2021.631972.
  12. Mendling W., Palmeira-de-Oliveira A., Biber S,. Prasauskas V. An update on the role of Atopobium vaginae in bacterial vaginosis: what to consider when choosing a treatment? A mini review. Arch Gynecol Obstet. 2019;300(1):1–6. doi: 10.1007/s00404-019-05142-8.
  13. Jimenez N.R., Maarsingh J.D., Laniewski P., Herbst-Kralovetz M.M. Commensal Lactobacilli Metabolically Contribute to Cervical Epithelial Homeostasis in a Species-Specific Manner. mSphere. 2023;8(1):e0045222. doi: 10.1128/msphere.00452-22.
  14. Laniewski P., Herbst-Kralovetz M.M. Bacterial vaginosis and health-associated bacteria modulate the immunometabolic landscape in 3D-model of human cervix. NPJ Biofilms Microbiomes 2021;7(1):88. doi: 10.1038/s41522-021-00259-8.
  15. Johnston Ch., Magaret А., Yuhas К., et al. Association between genital herpes simpex virus type-2 shedding and presence of bacterial vaginosis-associated bacteria. Sex Transm Infect. 2017;93(Suppl. 2):A74–75. doi: 10.1136/sextrans-2017-053264.188.
  16. Masese L., Baeten J.M., Richardson B.A., et al. Incident herpes simplex virus type 2 infection increases the risk of subsequent episodes of bacterial vaginosis. J Infect Dis. 2014;209(7):1023–27. doi: 10.1093/infdis/jit634.
  17. Stoner K.A., Reighard S.D., Vicetti M.R.D., et al. Recalcitrance of bacterial vaginosis among herpes-simplex-virus-type-2-seropositive women. J Obstet Gynaecol Res. 2012;38(1):77–83. doi: 10.1111/j.1447-0756.2011. 01697.x.
  18. Petrina M.A.B., Cosentino L.A., Rabe L.K., Hillier S.L. Susceptibility of bacterial vaginosis (BV)-associated bacteria to secnidazole compared to metronidazole, tinidazole and clindamycin. Anaerobe. 2017;47:115–19. doi: 10.1016/j.anaerobe.2017.05.005.
  19. Ranjit E., Raghubanshi B.R., Maskey S., Parajuli P. Prevalence of Bacterial Vaginosis and Its Association with Risk Factors among Nonpregnant Women: A Hospital Based Study. Int J Microbiol. 2018;2018:8349601. doi: 10.1155/2018/8349601.
  20. Oh K.Y., Lee S., Lee M.S., et al. Composition of Vaginal Microbiota in Pregnant Women With Aerobic Vaginitis. Front Cell Infect Microbiol. 2021;11:677648. doi: 10.3389/fcimb.2021.677648.
  21. Kremleva E.A., Sgibnev A.V. Proinflammatory Cytokines as Regulators of Vaginal Microbiota. Bull Exp Biol Med. 2016;162(1):75–8. doi: 10.1007/s10517-016-3549-1.
  22. Martins B.C.T., Guimaraes R.A., Alves R.R.F., Saddi V.A. Bacterial vaginosis and cervical human papillomavirus infection in young and adult women: a systematic review and meta-analysis. Rev Saude Publ. 2023;56:113. doi: 10.11606/s1518-8787.2022056004412.
  23. Lin W., Zhang Q., Chen Y., et al. Changes of the vaginal microbiota in HPV infection and cervical intraepithelial neoplasia: a cross-sectional analysis. Sci Rep. 2022;12(1):2812. doi: 10.1038/s41598-022-06731-5.
  24. Ntuli L., Mtshali A., Mzobe G., et al. Role of Immunity and Vaginal Microbiome in Clearance and Persistence of Human Papillomavirus Infection. Front Cell Infect Microbiol. 2022;12:927131. doi: 10.3389/fcimb.2022.927131.
  25. Lin W., Zhang Q., Chen Y. et al. The prevalence of human papillomavirus and bacterial vaginosis among young women in China: a cross-sectional study. BMC. Women’s Health. 2021;21(1):409. doi: 10.1186/s12905-021-01504-0.
  26. Romero-Morelos P., Bandala C., Jimenez-Tenorio J., et al. Vaginosis-associated bacteria and its association with HPV infection. Med Clin (Barc). 2019;152(1):1–5. English, Spanish. doi: 10.1016/j.medcli.2018.01.027.
  27. Torcia M.G. Interplay among Vaginal Microbiome, Immune Response and Sexually Transmitted Viral Infections. Int J Mol Sci. 2019;20(2):266. doi: 10.3390/ijms20020266.
  28. Benyas D., Sobel J.D. Mixed Vaginitis Due to Bacterial Vaginosis and Candidiasis. J Low Genit Tract. Dis. 2022;26(1):68–70. doi: 10.1097/LGT.0000000000000641.
  29. Tortelli B.A., Lewis W.G., Allsworth J.E., et al. Associations between the vaginal microbiome and Candida colonization in women of reproductive age. Am. J. Obstet. Gynecol. 2020;222(5):471.e1–471.e9. doi: 10.1016/j.ajog.2019.10.008.
  30. Perez-Torralba C., Ruiz-Olivares M., Sanbonmatsu-Gomez S., et al. Aumento de las infecciones por virus del herpes simple tipo 1 y polimicrobianas del aparato genital, en la poblacion general de una ciudad media espanola (Increased infections by herpes simplex virus type 1 and polymicrobials of the genital tract, in the general population of a Spanish middle city). Rev Esp Quimioter. 2021;34(4):320–9. Spanish. doi: 10.37201/req/004.2021.
  31. Бебнева Т.Н., Шилов Б.В. Изменения экспрессии ряда генов и микробиома на фоне папилломавирусной инфекции у беременных женщин. Проблемы репродукции. 2019;25(6):105–11. [Bebneva T.N., Shilov B.V. Changes in the expression of a number of genes and the microbiome against the background of human papillomavirus infection in pregnant women. Reprod Probl. 2019;25(6):105–11. (In Russ.)]. doi: 10.17116/repro201925061105.
  32. Anahtar M.N., Byrne E.H., Doherty K.E., et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015;42(5):965–76. doi: 10.1016/j.immuni.2015.04.019.
  33. Garrett N., Mtshali A., Osman F., et al. Impact of point-of-care testing and treatment of sexually transmitted infections and bacterial vaginosis on genital tract inflammatory cytokines in a cohort of young South African women. Sex Transm Infect. 2021;97(8):555–65. doi: 10.1136/sextrans-2020-054740.
  34. Hruzevskyi О. The cytokine system’s status in bacterial dysbiosis and bacterial vaginosis. ScienceRise: Med Sci. 2020;3:360. doi: 10.15587/2519-4798.2020.204094.
  35. Marsden V., Donaghy H., Bertram K.M., et al. Herpes simplex virus type 2-infected dendritic cells produce TNF-α, which enhances CCR5 expression and stimulates HIV production from adjacent infected cells. J Immunol. 2015;194:4438–45. doi: 10.4049/jimmunol.1401706.
  36. Keller M.J., Huber A., Espinoza L., et al. Impact of Herpes Simplex Virus Type 2 and Human Immunodeficiency Virus Dual Infection on Female Genital Tract Mucosal Immunity and the Vaginal Microbiome. J Infect Dis. 2019;220(5):852–61. doi: 10.1093/infdis/jiz203.
  37. Дикке Г.Б., Суханов А.А., Кукарская И.И., Остроменский В.В. Иммуноопосредованные механизмы воспалительного ответа при сочетанных инфекциях нижнего отдела полового тракта у женщин. Акушерство, гинекология и репродукция. 2020;15(3):245–57. doi: 10.17749/2313-7347/ob.gyn.rep.2021.209. [Dikke G.B., Sukhanov А.А., Kukarskaya I.I., Ostromensky V.V. Immune-mediated mechanisms of the inflammatory response in women with combined infections of the lower genital tract. Obstet Gynecol Reprod. 2020;15(3):245–57. (In Russ.)].

补充文件

附件文件
动作
1. JATS XML
##common.cookie##