Features of compensation of carbohydrate metabolism in patients with type 2 diabetes mellitus hospitalized with coronavirus infection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Diabetes mellitus (DM) in patients with COVID-19 is known to be a risk factor for severe disease and death. Hyperglycemia in hospitalized patients with diabetes and COVID-19 is corrected by insulin therapy (IT) in most cases. Studying the effectiveness of IT; the features of IT regimens during hospitalization and the selection of glucose-lowering therapy before discharge of DM2 patients hospitalized with coronavirus infection is relevant.

Objective. Evaluation of the features of compensation of carbohydrate metabolism in hospitalized DM2 patients with coronavirus infection who initially did not receive IT.

Methods. A retrospective study of DM2 patients hospitalized with coronavirus infection who were not receiving IT initially (n=86) was conducted The first group consisted of patients receiving IT in a hospital (n=63); the second group included patients compensated with hypoglycemic non-insulin drugs (n=23). In the study groups; anamnestic; clinical; laboratory and instrumental parameters; and indicators of carbohydrate metabolism were assessed. Additionally; groups receiving glucocorticosteroid (GCS) therapy (n=56) and without it (n=30) was compared.

Results. In inpatient settings; 73.3% of patients were prescribed IT; 38.4% received IT only; 34.9% received IT in combination with other glucose-lowering drugs. Among discharged patients; IT was recommended in 18.8%. Patients receiving IT in the hospital had higher lactate dehydrogenase levels on admission (259.3 vs. 223.8 U/L; P=0.006); and a higher proportion of cases with lung damage greater than 25% (42.9 vs. 13.0%; P=0.011); severe COVID-19 (28.6 vs. 4.4%; P=0.018) and transfer to ICU (19.1 vs. 0.0%; P=0.031). Patients of the first group were characterized by a high level of fasting glycemia on the first (9.6 vs 6.9 mmol/l; P<0.001); third (9.8 vs 7.9 mmol/l; p=0.030) and 7th days (10.4 vs 7.4 mmol/l; p=0.021); the maximum daily dose of insulin was 0.40 (0.19–0.62) U/kg on the 3rd day. The frequency of use of IT in the hospital in patients receiving GCS was 87.5%; in the group without GCS therapy – 46.7% (p<0.001); upon discharge from the hospital – 26.0 and 6.7% (P=0.070); respectively.

Conclusion. In DM2 patients hospitalized with coronavirus infection who did not receive insulin initially; transfer to IT was carried out in 73.3%; at the time of discharge from the hospital; 18.8% needed continued IT. Patients prescribed insulin had severe COVID-19 and worse glycemic control. The use of GCS increased the chance of transfer to IT (87.5%); however; even in patients who did not receive GCS; every second was prescribed IT to compensate for carbohydrate metabolism; which indicates the direct influence of SARS-CoV2 on the development of hyperglycemia in the acute period of coronavirus infection; regardless from the use of GCS.

Full Text

Restricted Access

About the authors

T. N. Markova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry; City Clinical Hospital № 52 of the Moscow Healthcare Department

Email: anastasia.ponomariova@yandex.ru
ORCID iD: 0000-0001-7911-2424
SPIN-code: 5914-2890
Russian Federation, Moscow; Moscow

Anastasia A. Anchutina

City Clinical Hospital № 52 of the Moscow Healthcare Department

Author for correspondence.
Email: anastasia.ponomariova@yandex.ru
ORCID iD: 0000-0002-6202-8821
SPIN-code: 5252-8148

endocrinologist; department of endocrinology

Russian Federation, Moscow

M. S. Stas

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: anastasia.ponomariova@yandex.ru
ORCID iD: 0000-0002-9498-6039
SPIN-code: 4601-6785
Russian Federation, Moscow

M. M. Medzhidova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: anastasia.ponomariova@yandex.ru
ORCID iD: 0009-0008-8320-6237
SPIN-code: 7198-6338
Russian Federation, Moscow

References

  1. Pallares N.; Tebe C.; Abelenda-Alonso G.; et al. Characteristics and Outcomes by Ceiling of Care of Subjects Hospitalized with COVID-19 During Four Waves of the Pandemic in a Metropolitan Area: A Multicenter Cohort Study. Infect Dis Ther. 2023;12(1):273–89. doi: 10.1007/s40121-022-00705-w.
  2. Guo W.; Li M.; Dong Y.; et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diab Metab Res Rev. 2020;36(7):e3319. doi: 10.1002/dmrr.3319.
  3. Kastora S.; Patel M.; Carter B.; et al. Impact of diabetes on COVID-19 mortality and hospital outcomes from a global perspective: An umbrella systematic review and meta-analysis. Endocrinol Diab Metab. 2022;5(3):e00338. doi: 10.1002/edm2.338.
  4. Manique I.; Abegao Matias A.; Bouca B.; et al. Does the Hyperglycemia Impact on COVID-19 Outcomes Depend upon the Presence of Diabetes? An Observational Study. Metab. 2022;12(11):1116. doi: 10.3390/metabo12111116.
  5. Yang W.; Sun X.; Zhang J.; et al. The effect of metformin on mortality and severity in COVID-19 patients with diabetes mellitus. Diab Res Clin Pract. 2021;178:108977. doi: 10.1016/j.diabres.2021.108977.
  6. Nguyen N.N.; Ho D.S.; Nguyen H.S.; et al. Preadmission use of antidiabetic medications and mortality among patients with COVID-19 having type 2 diabetes: A meta-analysis. Metab. 2022;131:155196. doi: 10.1016/j.metabol.2022.155196.
  7. Анчутина А.А.; Маркова Т.Н. Анализ предшествующей сахароснижающей терапии у госпитализированных пациентов с сахарным диабетом 2 типа и СOVID 19: влияние на исход. Мультидисциплинарный больной: сборник тезисов V Терапевтического форума Всероссийской конференции молодых терапевтов; Санкт-Петербург; 26–27 мая 2022 г. Российское научное медицинское общество терапевтов. С. 30. [Anchutina A.A.; Markova T.N. Analysis of source hypoglycemic therapy in hospitalized patients with type 2 diabetes mellitus and COVID-19: impact on outcome. Multidisciplinary patient: collection of abstracts of the V Therapeutic Forum of the All-Russian Conference of Young Therapists; St. Petersburg; May 26–27; 2022. Rus Sci Med Soc Ther. P. 30. (In Russ.)].
  8. Yang Y.; Cai Z.; Zhang J. Insulin Treatment May Increase Adverse Outcomes in Patients With COVID-19 and Diabetes: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2021;12:696087. doi: 10.3389/fendo.2021.696087.
  9. Riahi S.; Sombra L.R.S.; Lo K.B.; et al. Insulin Use; Diabetes Control; and Outcomes in Patients with COVID-19. Endocr Res. 2021;46(2):45–50. doi: 10.1080/07435800.2020.1856865.
  10. Дедов И.И.; Мокрышева Н.Г.; Шестакова М.В. и др. Контроль гликемии и выбор антигипергликемической терапии у пациентов с сахарным диабетом 2 типа и COVID-19: консенсусное решение совета экспертов Российской ассоциации эндокринологов. Сахарный диабет. 2022;25(1):27–49. [Dedov I.I.; Mokrysheva N.G.; Shestakova M.V.; et al. Glycemia control and choice of antihyperglycemic therapy in patients with type 2 diabetes mellitus and COVID-19: a consensus decision of the board of experts of the Russian association of endocrinologists. Diab Mellit. 2022;25(1):27–49. (In Russ.)]. doi: 10.14341/DM12873.
  11. Czupryniak L.; Dicker D.; Lehmann R. et al. The management of type 2 diabetes before; during and after Covid-19 infection: what is the evidence? Cardiovasc Diab. 2021;20:198. doi: 10.1186/s12933-021-01389-1.
  12. Bornstein S.R.; Rubino F.; Khunti K.; et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet. Diab Endocrinol. 2020;8(6):546–50. doi: 10.1016/S2213-8587(20)30152-2.
  13. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. И.И. Дедова; М.В. Шестаковой; А.Ю. Майорова. 11-й выпуск. М.; 2023. [Standards of specialized diabetes care. Ed. by I.I. Dedov; M.V. Shestakova; A.Y. Mayorov. 11th edition. М.; 2023. (In Russ.)]. doi: 10.14341/DM13042.
  14. Van den Berghe G.; Wouters P.; Weekers F.; et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67. doi: 10.1056/NEJMoa011300.
  15. Rayman G.; National Health Service. National Diab. Inpat. Audit 2017;2017. Available at: https://files.digital.nhs.uk/pdf/s/7/nadia-17-rep.pdf.
  16. Finfer S.; Chittock D.R.; Su S.Y.; et al. NICE-SUGAR. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97. doi: 10.1056/NEJMoa0810625.
  17. Knox D.B.; Hirshberg E.L.; Orme J.; et al. Effect of COVID 19 pneumonia on hyperglycemia: Is it different from non COVID pneumonia? Diab Metab Syndr. 2022;16(2):102407. doi: 10.1016/j.dsx.2022.102407.
  18. Sterne J.A.C.; Murthy S.; Diaz J.V.; et al. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA. 2020;324(13):1330–41. doi: 10.1001/jama.2020.17023.
  19. Rayman G.; Lumb A.N.; Kennon B.; et al. Dexamethasone therapy in COVID-19 patients: implications and guidance for the management of blood glucose in people with and without diabetes. Diab Med. 2021;38(1):e14378. doi: 10.1111/dme.14378.
  20. Llanera D.K.; Wilmington R.; Shoo H.; et al. Clinical Characteristics of COVID-19 Patients in a Regional Population With Diabetes Mellitus: The ACCREDIT Study. Front Endocrinol (Lausanne). 2022;12:777130. doi: 10.3389/fendo.2021.777130.
  21. Tomazini B.M.; Maia I.S.; Cavalcanti A.B.; et al. COALITION COVID-19 Brazil III Investigators. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA. 2020;324(13):1307–16. doi: 10.1001/jama.2020.17021.
  22. Edge S.B.; Compton C.C. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–74. doi: 10.1245/s10434-010-0985-4.
  23. Дедов И.И.; Мокрышева Н.Г.; Мельниченко Г.А. Клинические рекомендации. Ожирение. Министерство здравоохранения Российской Федерации. 2020. [Dedov I.I.; Mokrysheva N.G.; Melnichenko G.A.; et al. Clinical guidelines. Obesity. Ministry of Health of the Russian Federation. 2020. (In Russ.)]. URL: https://cr.minzdrav.gov.ru/recomend/28_1
  24. Авдеев С.Н.; Адамян Л.В.; Алексеева Е.И. и др. Временные методические рекомендации. Профилактика; диагностика и лечение новой коронавирусной инфекции (COVID-19). Министерство здравоохранения Российской Федерации. Версия 15. 22.02.2022. [Avde-ev S.N.; Adamyan L.V.; Alekseeva E.I.; et al. Temporary guidelines. The prevention; diagnosis and treatment of the new coronavirus infection (COVID-19). Ministry of Health of the Russian Federation. Version 15. 22.02.2022. (In Russ.)]. URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/ВМР_COVID-19_V15.pdf.
  25. Wander P.L.; Lowy E.; Korpak A.; et al. SARS-CoV-2 infection is associated with higher odds of insulin treatment but not with hemoglobin A1c at 120 days in U.S. Veterans with new-onset diabetes. Diab Epidemiol Manag. 2023;11:100151. doi: 10.1016/j.deman.2023.100151.
  26. Boye K.S.; Tokar Erdemir E.; Zimmerman N.; et al. Risk Factors Associated with COVID-19 Hospitalization and Mortality: A Large Claims-Based Analysis Among People with Type 2 Diabetes Mellitus in the United States. Diab Ther. 2021;12:2223–39. doi: 10.1007/s13300-021-01110-1.
  27. Yu B.; Li C.; Sun Y.; et al. Wang DW. Insulin Treatment Is Associated with Increased Mortality in Patients with COVID-19 and Type 2 Diabetes. Cell Metab. 2021;33(1):65–77.e2. doi: 10.1016/j.cmet.2020.11.014.
  28. Reiterer M.; Rajan M.; Gomez-Banoy N.; et al. Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab. 2021;33(11):2174–88.e5. doi: 10.1016/j.cmet.2021.09.009.
  29. Peralta Amaro A.L.; Ramirez Ventura J.C.; Banuelos Garcia L.R.; et al. Importance of Insulin Resistance in the COVID-19 Era: A Retrospective Analysis of a Single Center in Mexico. Cureus. 2022;14(9):e29542. doi: 10.7759/cureus.29542.
  30. Shin J.; Toyoda S.; Nishitani S.; et al. SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the lung; liver; adipose tissue; and pancreatic cells via IRF1. Metab. 2022;133:155236. doi: 10.1016/j.metabol.2022.155236.
  31. Mustroph J.; Hupf J.; Hanses F.; et al. Decreased GLUT1/NHE1 RNA expression in whole blood predicts disease severity in patients with COVID-19. ESC. Heart Fail. 2021;8(1):309–16. doi: 10.1002/ehf2.13063.
  32. Sauvage M.; Maziere P.; Fathallah H.; et al. Insulin stimulates NHE1 activity by sequential activation of phosphatidylinositol 3-kinase and protein kinase C zeta in human erythrocytes. Eur J Biochem. 2000;267(4):955–62. doi: 10.1046/j.1432-1327.2000.01084.x.
  33. Klisic J.; Hu M.C.; Nief V.; et al. Insulin activates Na(+)/H(+) exchanger 3: biphasic response and glucocorticoid dependence. Am J Physiol.Renal Physiol. 2002;283(3):F532–39. doi: 10.1152/ajprenal.00365.2001.
  34. Mavridis G.; Souliou E.; Diza E.; et al. Inflammatory cytokines in insulin-treated patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2008;18(7):471–76. doi: 10.1016/j.numecd.2007.02.013.
  35. Wu C.T.; Lidsky P.V.; Xiao Y.; et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021;33(8):1565–76.e5. doi: 10.1016/j.cmet.2021.05.013.
  36. Салухов В.В.; Арутюнов Г.П.; Тарловская Е.И. и др. Влияние нарушений углеводного обмена на ранние и отдаленные клинические исходы у пациентов с COVID-19 по данным регистров АКТИВ и АКТИВ 2. Проблемы эндокринологии. 2023;69(1):36–49. [Salukhov V.V.; Arutyunov G.P.; Tarlovskaya E.I.; et al. The impact of carbohydrate metabolism disorders on the early and long-term clinical outcomes of patients with COVID-19 according to the AKTIV and AKTIV 2 registries. Probl Endocrinol. 2023;69(1):36–49. (In Russ.)]. doi: 10.14341/probl13175.
  37. RECOVERY Collaborative Group. Higher dose corticosteroids in patients admitted to hospital with COVID-19 who are hypoxic but not requiring ventilatory support (RECOVERY): a randomised; controlled; open-label; platform trial. Lancet. 2023;401(10387):1499–507. doi: 10.1016/S0140-6736(23)00510-X.
  38. Fornwald C.R.; Tuttle N.S.; Murphy J.A. NPH Insulin Versus Insulin Glargine Versus NPH Insulin Plus Insulin Glargine for the Treatment of Dexamethasone-Induced Hyperglycemia in Patients With COVID-19: A Retrospective Cohort Study. J Pharm Technol. 2023;39(2):68–74. doi: 10.1177/87551225231156329.
  39. Chertok Shacham E.; Maman N.; Ishay A. Blood glucose control with different treatment regimens in type 2 diabetes patients hospitalized with COVID-19 infection: A retrospective study. Medicine (Baltimore). 2023;102(3):e32650. doi: 10.1097/MD.0000000000032650.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (326KB)
3. Fig.2.

Download (184KB)
4. Fig.3.

Download (170KB)
5. Fig.4.

Download (51KB)

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies