Analysis of the frequency of CYP2C9, AGTR1, AGT, ACE, CYP11B2 gene Polymorphisms occurrence in patients with newly diagnosed 1–2 degree arterial hypertension

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The lack of clinical effectiveness of pharmacotherapy for arterial hypertension (AH) may be associated with interindividual genetic variability. The most relevant is the identification of genetic polymorphisms in the genes of key factors regulating the cardiovascular system associated with the functioning of the renin-angiotensin-aldosterone system (RAAS): genes encoding angiotensin-converting enzyme (ACE), angiotensinogen, receptors for angiotensin II type 1, aldosterone synthetase, and also in the gene for the enzyme CYP2C9, one of the main enzymes in the metabolism of angiotensin II receptor blockers (ARBs).

Objective. Determination of the frequency of occurrence of polymorphic variants of the CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu), AGTR1 (A1166C), AGT (M235T), ACE (I/D polymorphism), CYP11B2 (C-344T) genes and combinations of risk alleles in patients with newly diagnosed 1–2 degree AH followed-up in a Moscow clinic.

Methods. The study included 179 patients with newly diagnosed 1-2 degree AH, 141 (78.8%) women and 38 (21.2%) men aged 32 to 69 years (mean age – 58.2± 6.4 years). In patients with newly diagnosed 1–2 degree AH, permanently residing in Moscow, allelic variants of the CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu), AGTR1 (A1166C), AGT (M235T), ACE (I/D polymorphism), CYP11B2 (C-344T) genes were analyzed using molecular genetic analysis.

Results: The frequency distribution of genotypes for the CYP2C9*2 gene was as follows: genotype *1*1 was determined in 141 (78.8%) patients, heterozygous genotype for the risk allele *1*2 in 34 (19%), homozygous *2* 2 – in 4 (2.2%) patients. The distribution of genotypes for the CYP2C9*3 genetic polymorphism was as follows: genotype *1*1 was detected in 146 (81.6%) patients, heterozygous for the nonfunctional allele *1*3 – in 33 (18.4%) patients; patients homozygous for the risk allele of the CYP2C9*3 gene were not identified. The distribution of patient genotypes according to the genetic polymorphism A1166C of the AGTR1 gene is as follows: the AA genotype was determined in 85 (47.5%) patients, the AC genotype in 80 (44.7%) patients, the CC genotype in 14 (7.8%). As a result of molecular genetic analysis of single nucleotide M235T polymorphism of the AGT gene, the following distribution of genotypes was obtained: 36 (20.1%) patients were carriers of the CC genotype, the CT genotype was determined in 98 (54.7%) patients, and the TT genotype was determined in 45 ( 25.1%). According to the data obtained, the carrier frequency of the risk allele D for the I/D polymorphism of the ACE gene was 48.3%, while 45 (25.1%) patients were homozygous for this allele and carriers of the DD genotype, and heterozygous representatives of the ID genotype – 83 (46.4%) patients. The frequency distribution of genotypes for the polymorphism of the aldosterone synthetase gene CYP11B2 (C-344T) was obtained as follows: the CC genotype was determined in 38 (21.2%) patients, the CT genotype in 90 (50.3%) patients and the TT genotype in 51 (28.5%).

Conclusion. There were no statistically significant deviations in the observed frequency of genotypes from the theoretical one determined by the Hardy–Weinberg equilibrium, which indicates this group of patients is in genetic equilibrium and the possibility of extrapolating the study results to the population. In 16.2% of this sample of patients, a combination of risk alleles was determined for all genes studied affecting the pharmacodynamics of RAAS inhibitors, key factors in the regulation of the cardiovascular system. In 6.1% of patients in this sample, carriers of risk alleles for CYP29*2 and pharmacodynamic genes AGT, ACE, CYP11B2 were determined, 4.5% of patients were carriers of risk alleles for CYP2C9*3 and pharmacodynamic genes AGTR1, AGT, ACE, CYP11B2.

Full Text

Restricted Access

About the authors

Ekaterina V. Rebrova

Sechenov University

Author for correspondence.
Email: katrina1987@rambler.ru
ORCID iD: 0000-0002-4374-9754

Cand. Sci. (Med.), Associate Professor, Associate Professor at the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases

Russian Federation, Moscow

E. V. Shikh

Sechenov University

Email: katrina1987@rambler.ru
ORCID iD: 0000-0001-6589-7654
Russian Federation, Moscow

R. E. Kazakov

Russian Medical Academy of Continuous Professional Education

Email: katrina1987@rambler.ru
ORCID iD: 0000-0003-0802-4229
Russian Federation, Moscow

G. G. Melkonyan

Hospital for War Veterans № 3

Email: katrina1987@rambler.ru
ORCID iD: 0000-0001-7234-4185
Russian Federation, Moscow

N. P. Kulagina

Hospital for War Veterans № 3

Email: katrina1987@rambler.ru
Russian Federation, Moscow

References

  1. Oliveira-Paula G.H., Pereira S.C., Tanus-Santos J.E., et al. Phamacogenomics And Hypertension: Current Insights. Pharmgenom. Pers Med. 2019;12:341–59. doi: 10.2147/PGPM.S230201.
  2. Benjamin E.J., Muntner P., Alonso A., et al.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56–528. doi: 10.1161/CIR.0000000000000659.
  3. Torrellas C., Carril J.C., Cacabelos R. Benefits of Pharmacogenetics in the Management of Hypertension. J Pharmacogenom Pharmacoproteom. 2014;5:126. doi: 10.4172/2153-0645.1000126.
  4. Johnson J.A. Advancing management of hypertension through pharmacogenomics. Ann Med. 2012;44(Suppl. 1):S17–22. doi: 10.3109/07853890.2011.653399.
  5. Luizon M.R., Pereira D.A., Sandrim V.C. Pharmacogenomics of Hypertension and Preeclampsia: Focus on Gene-Gene Interactions. Front Pharmacol. 2018;9:168. doi: 10.3389/fphar.2018.00168.
  6. Padmanabhan S., Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev. 2017;97(4):1469–528. doi: 10.1152/physrev.00035.2016.
  7. Cacabelos R., Martinez-Bouza R., Carril J.C., et al. Genomics and pharmacogenomics of brain disorders. Curr Pharm Biotechnol. 2012;13(5):674–725. doi: 10.2174/138920112799857576.
  8. Zanger U.M. Pharmacogenetics – challenges and opportunities ahead. Front Pharmacol. 2010;1:112. doi: 10.3389/fphar.2010.00112.
  9. Николаева Т.Я., Эверстова Т.Е., Чугунова С.А. и др. Этнические особенности носительства сочетаний генотипов cyp2c9 и VKORC1 среди пациентов с кардиоэмболическим ишемическим инсультом. Consilium Medicum. 2020;22(2):9–12. [Nikolaeva T.Ya., Everstova T.E., Chugunova S.A. et al. Ethnic characteristics of carriage of combinations of cyp2c9 and VKORC1 genotypes among patients with cardioembolic ischemic stroke. Consilium Medicum. 2020;22(2):9–12. (In Russ.)]. doi: 10.26442/20751753.2020.2.200033.
  10. Павлова О. С., Огурцова С. Э., Горбат Т. В., и др. Полигенные ассоциации полиморфизма генов ренин-ангиотензин-альдостероновой системы при эссенциальной артериальной гипертензии. Артериальная гипертензия. 2016;22(3):253–62. [Pavlova O. S., Ogurtsova S. E., Gorbat T. V., et al. Polygenic associations of polymorphism of genes of the renin-angiotensin-aldosterone system in essential arterial hypertension. Arterial’naya gipertenziya. 2016;22(3):253–62. (In Russ.)]. doi: 10.18705/1607-419X-2016-22-3-253-262.
  11. Mathew J., Basheeruddin K., Prabhakar S. Differences in frequency of the deletion polymorphism of the angiotensin-converting enzyme gene in different ethnic groups. Angiology. 2001;52(6):375–79. doi: 10.1177/000331970105200602.
  12. Lee Y.J., Tsai J.C. ACE gene insertion/deletion polymorphism associated with 1998 World Health Organization definition of metabolic syndrome in Chinese type 2 diabetic patients. Diab Care. 2002;25(6):1002–8. doi: 10.2337/diacare.25.6.1002.
  13. Saab Y.B., Gard P.R., Overall A.D. The geographic distribution of the ACE II genotype: a novel finding. Genet Res. 2007;89(4):259–67. doi: 10.1017/S0016672307009019.
  14. Kim H.K., Lee H., Kwon J.T., Kim H.J. A polymor-phism in AGT and AGTR1 gene is associated with lead-related high blood pressure. J. Renin Angiotensin Aldosterone Syst. 2015;16(4):712–19. doi: 10.1177/1470320313516174.
  15. Chen K., Xiao P., Li G., et al. Distributive characteristics of the CYP2C9 and AGTR1 genetic polymorphisms in Han Chinese hypertensive patients: a retrospective study. BMC. Cardiovasc Disord. 2021;21(1):73. doi: 10.1186/s12872-021-01895-w.
  16. Dong H., Wang F.Z., Shi K., et al. Association of Cytochrome P450 2C9*3 and Angiotensin II Receptor 1 (1166A>C) Gene Polymorphisms With the Antihypertensive Effect of Irbesartan. Am J Hypertens. 2021;34(1):121. doi: 10.1093/ajh/hpaa134.
  17. Liu Y., Kong X., Jiang Y., et al. Association of AGTR1 A1166C and CYP2C9*3 Gene Polymorphisms with the Antihypertensive Effect of Valsartan. Int J Hypertens. 2022;2022:7677252. doi: 10.1155/2022/7677252.
  18. Wang Z., Hou J., Zheng H., et al. Genetic and phenotypic frequency distribution of ACE, ADRB1, AGTR1, CYP2C9*3, CYP2D6*10, CYP3A5*3, NPPA and factors associated with hypertension in Chinese Han hypertensive patients. Medicine (Baltimore). 2023;102(10):e33206. doi: 10.1097/MD.0000000000033206.
  19. Bae J.W., Kim H.K., et al. Allele and genotype frequencies of CYP2C9 in a Korean population. Br J Clin Pharmacol. 2005;60(4):418–22. doi: 10.1111/j.1365-2125.2005.02448.x.
  20. Patel D.D., Parchwani D.N., Dikshit N., et al. Analysis of the Pattern, Alliance and Risk of rs1799752 (ACE I/D Polymorphism) with Essential Hypertension. Indian J Clin Biochem. 2022;37(1):18–28. doi: 10.1007/s12291-020-00927-0.
  21. Ji X., Qi H., Li D.B., et al. Associations between human aldosterone synthase CYP11B2 (-344T/C) gene polymorphism and antihypertensive response to valsartan in Chinese patients with essential hypertension. Int J Clin Exp. Med. 2015;8(1):1173–77.
  22. Мулерова Т. А., Морозова Н. И., Максимов В.Н. и др. Полиморфизм генов-кандидатов ренин-ангиотензин-альдостероновой системы (АСЕ, AGT, AGTR1) и эффективность лечения артериальной гипертензии. Результаты исследования в Горной Шории. Системные гипертензии. 2020;4. [Mulerova T. A., Morozova N.I., Maksi-mov V.N. et al. Polymorphism of candidate genes of the renin-angiotensin-aldosterone system (ACE, AGT, AGTR1) and the effectiveness of treatment of arterial hypertension. Results of the study in Gornaya Shoria. Sistemnyye gipertenzii. 2020;4. (In Russ.)]. doi: 10.26442/2075082X.2020.4.200034.
  23. Тимохина Е.В., Стрижаков А.Н., Игнатко И.В. и др. Полиморфизм гена ангиотензин-превращающего фермента ACE существенно увеличивает риск развития преэклампсии. Биохимия. 2019;84:181–86. [Timokhina E.V., Strizhakov A.N., Ignatko I.V. and others. Polymorphism of the angiotensin-converting enzyme gene ACE significantly increases the risk of developing preeclampsia. Biokhimiya=Biochemistry. 2019;84:181–86. (In Russ.)]. doi: 10.1134/S0006297919020093.
  24. Rohman M.S., Fajar J.K., Kuncahyo B.H., et al. Angiotensin-converting enzyme (ACE) I/D and bradykinin B2 receptor T/C genes polymorphism in patients with ACE inhibitors-related cough. Egyptian J Med Human Genet. 2018;19(4):307–13. doi: 10.1016/j.ejmhg.2018.05.006.
  25. Bezerra K.R.V., Tanaka S.C.S.V., Silva V.R.S., et al. Contribution of rs1799998 polymorphism in CYP11B2 gene in susceptibility to preeclampsia. Rev Bras Saude Mater Infant. 2020;20(2):467–71. doi: 10.1590/1806-93042020000200008.
  26. Park Y.A., Song Y.B., Yee J., et al. Influence of CYP2C9 Genetic Polymorphisms on the Pharmacokinetics of Losartan and Its Active Metabolite E-3174: A Systematic Review and Meta-Analysis. J Pers Med. 2021;11(7):617. doi: 10.3390/jpm1107061.
  27. Rysz J., Franczyk B., Rysz-Gorzynska M., Gluba-Brzozka A. Pharmacogenomics of Hypertension Treatment. Int J Mol Sci. 2020;21(13):4709. doi: 10.3390/ijms21134709.
  28. Mocan O., Radulescu D., Buzdugan E., et al. Association Between M235T-AGT and I/D-ACE Polymorphisms and Carotid Atheromatosis in Hypertensive Patients: A Cross-Sectional Study. In Vivo. 2020;34(5):2811–19. doi: 10.21873/invivo.12107.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (65KB)
3. Fig.2.

Download (99KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies