Neurophysiological manifestations of neuropathy induced by taxane and platinum chemotherapeutic agents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Chemotherapy (CT)-induced peripheral neurotoxicity is one of the main dose-dependent side effects of many antitumor agents, including taxane and platinum agents. Symptoms of chemotherapy-induced peripheral neuropathy (CIPN) often persist after completion of treatment and affect the quality of life of patients who have undergone drug therapy for malignant tumors.

Objective. Identification of clinical and subclinical disorders in cancer patients with CIPN by studying the dynamics of neuromyographic parameters during antitumor treatment.

Material and methods. The study included 93 cancer patients with CIPN who underwent drug antitumor treatment. The mean age was 54.7±10.5 years. All patients underwent electroneuromyography (ENMG) using the Neuromag-EMG-micro electroneuromyograph (Neurosoft LLC, Russia) at the time of diagnosis of CIPN and 10 patients – 6 months after completion of chemotherapy.

Results. When evaluating the ENMG data during the initial examination of patients, a decrease in the amplitude of the sensory response of the median and sural nerves was recorded, which indicates a predominantly axonal-demyelinating lesion of the peripheral nerves. Repeated examination revealed worsening of nerve fiber conductivity, as evidenced by a decrease in the excitation propagation velocity (EPV) of the sensory response of the median and sural nerves, as well as a tendency to decrease in the EPV of the motor response of the median and tibial nerves.

Conclusion. Neurophysiological methods for assessing CIPN provide objective markers for the early diagnosis of toxicity, and the data obtained from patients help to assess the significance of symptoms in the context of the individual characteristics of each patient. However, given the small number of studies devoted to the study of the role of ENMG in patients with CIPN, further research is required.

Full Text

Restricted Access

About the authors

S. V. Chubykina

Pirogov Russian National Research Medical University

Author for correspondence.
Email: svetasveta@bk.ru
ORCID iD: 0000-0001-5196-8992
Russian Federation, Moscow

M. Yu. Tatarinova

Pirogov Russian National Research Medical University

Email: svetasveta@bk.ru
ORCID iD: 0000-0002-2701-7326
Russian Federation, Moscow

G. G. Avakyan

Pirogov Russian National Research Medical University

Email: svetasveta@bk.ru
ORCID iD: 0000-0002-8985-8227
Russian Federation, Moscow

R. I. Knyazev

N.N. Blokhin National Medical Research Center of Oncology; Russian Medical Academy of Continuous Professional Education

Email: svetasveta@bk.ru
ORCID iD: 0000-0002-6341-0897
Russian Federation, Moscow; Moscow

References

  1. Sung H., Ferlay J., Siegel R.L., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. doi: 10.3322/caac.21660.
  2. Arnold M., Rutherford M.J., Bardot A., et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995-2014 (ICBP SURVMARK-2): a population-based study. Lancet. Oncology. 2019;20(11):1493–505. doi: 10.1016/S1470-2045(19)30456-5.
  3. Argyriou A.A., Bruna J., Marmiroli P., Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Critical Rev. Oncol/Hematol. 2012;82(1):51–77. doi: 10.1016/j.critrevonc.2011.04.012.
  4. Argyriou A.A., Kyritsis A.P., Makatsoris T., et al. Chemotherapy-induced peripheral neuropathy in adults: a comprehensive update of the literature. Cancer Management Res. 2014;6:135–47. doi: 10.2147/CMAR.S44261.
  5. Pike C.T., Birnbaum H.G., Muehlenbein C.E., et al. Healthcare costs and workloss burden of patients with chemotherapy-associated peripheral neuropathy in breast, ovarian, head and neck, and non-small cell lung cancer. Chemother Res Pract. 2012;2012:913848. doi: 10.1155/2012/913848.
  6. Smith E.M.L., Knoerl R., Yang J.J., et al. In search of a gold standard patient-reported outcome measure for use in chemotherapy-induced peripheral neuropathy clinical trials. Cancer Control. 2018;25(1):1073274818756608. doi: 10.1177/1073274818756608.
  7. Molassiotis A., Cheng H.L., Lopez V., et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC. Cancer. 2019;19(1):132. doi: 10.1186/s12885-019-5302-4.
  8. Openshaw H., Beamon K., Synold T.W., et al. Neurophysiological study of peripheral neuropathy after high-dose Paclitaxel: lack of neuroprotective effect of amifostine. Clin Cancer Res. 2004;10:461–67. doi: 10.1158/1078-0432.ccr-0772-03.
  9. Николаев С.Г. Практикум по клинической электронейромиографии. Иваново, 2003. 264 с. [Nikolaev S.G. Practical training in clinical electroneuromyography. Ivanovo, 2003. 264 p. (In Russ.)].
  10. Kimura J. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. Oxford University Press: 2001–1024. doi: 10.1097/00131402-200112000-00010.
  11. Kandula T., Farrar M.A., Kiernan M.C., et al. Neurophysiological and clinical outcomes in chemotherapy-induced neuropathy in cancer. Clin Neurophysiol. 2017;128:1166–75. doi: 10.1016/j.clinph.2017.04.009.
  12. Argyriou A.A., Park S.B., Islam B., et al. Neurophysiological, nerve imaging and other techniques to assess chemotherapy-induced peripheral neurotoxicity in the clinical and research settings. J Neurol Neurosurg Psych. 2019 90(12):1361–69. doi: 10.1136/jnnp-2019-320969.
  13. Ibrahim E.Y., Ehrlich B.E. Prevention of chemotherapy-induced peripheral neuropathy: A review of recent findings. Critical Rev. Oncol/Hematol. 2020;145:102831. doi: 10.1016/j.critrevonc.2019.102831.
  14. Cavaletti G., Bogliun G., Marzorati L., et al. Grading of chemotherapy-induced peripheral neurotoxicity using the Total Neuropathy Scale. Neurology. 2003;61:1297–300. doi: 10.1212/01.wnl.0000092015.03923.19.
  15. Webster R.G., Brain K.L., Wilson R.H., et al. Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels. Brit J Pharmacol. 2005;146:1027–39. doi: 10.1038/sj.bjp.0706407.
  16. Park S.B., Goldstein D., Lin C.S.-Y., et al. Acute abnormalities of sensory nerve function associated with oxaliplatin-induced neurotoxicity. J. Clin. Oncol. 2009;27:1243–49. doi: 10.1200/JCO.2008.19.3425
  17. Jordan M.A., Wilson L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer. 2004;4:253–65. doi: 10.1038/nrc1317
  18. Park S.B., Krishnan A.V., Lin C.S., et al. Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies. Curr Med Chem. 2008;15(29):3081–94. doi: 10.2174/092986708786848569.
  19. Sisignano M., Baron R., Scholich K., Geisslinger G. Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol. 2014;10(12):694–707. doi: 10.1038/nrneurol.2014.211.
  20. Gornstein E.L., Schwarz T.L. Neurotoxic Mechanisms of Paclitaxel Are Local to the Distal Axon and Independent of Transport Defects. Exp Neurol. 2017;288:153–66. doi: 10.1016/j.expneurol.2016.11.015.
  21. Ватутин Н.Т., Склянная Е.В., Эль-Хатиб М.А. и др. Периферические полинейропатии, индуцированные различными химиотерапевтическими агентами: современное состояние проблемы. Гематология и трансфузиология. 2016;61(2):105–9. [Vatutin M.T., Sklyannaya E.V., El-Khatib M.A., et al. Peripheral neurophathies induced by various chemotherapeutic agents: current state of the problem. Hematol Transfusiol. 2016;61(2):105–9 (In Russ.)]. doi: 10.18821/0234-5730-2016-612-105-109.
  22. Cavaletti G., Frigeni B., Lanzani F., et al. Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools. Eur J Cancer. 2010;46(3):479–94. doi: 10.1016/j.ejca.2009.12.008.
  23. Cavaletti G., Frigeni B., Lanzani F., et al. The Total Neuropathy Score as an assessment tool for grading the course of chemotherapy-induced peripheral neurotoxicity: comparison with the National Cancer Institute-Common Toxicity Scale. J Periph Nerv Syst. 2007;12:210–15. doi: 10.1111/j.1529-8027.2007.00141.x
  24. Park S.B., Alberti P., Kolb N.A., et al. Overview and critical revision of clinical assessment tools in chemotherapy-induced peripheral neurotoxicity. J Periph Nerv Syst. 2019;24(Suppl. 2):S13–25. doi: 10.1111/jns.12333.
  25. Thawani S.P., Tanji K., De Sousa E.A., et al. Bortezomib-associated demyelinating neuropathy--clinical and pathologic features. J Clin Neuromusc Dis. 2015;16:202–9. doi: 10.1097/CND.0000000000000077.
  26. Lavoie Smith E.M., Li L., Chiang C., et al. Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J Periph Nerv Syst. 2015;20:37–46. doi: 10.1111/jns.12114.
  27. Argyriou A.A., Koltzenburg M., Polychronopoulos P., et al. Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol /Hematol. 2008;66:218–28. doi: 10.1016/j.critrevonc.2008.01.008.
  28. Argyriou A.A., Polychronopoulos P., Koutras A., et al. Peripheral neuropathy induced by administration of cisplatin- and paclitaxel-based chemotherapy. Could it be predicted? Support. Care Cancer. 2005;13:647–51. doi: 10.1007/s00520-005-0776-9.
  29. Cavaletti G., Tredici G., Petruccioli M.G., et al. Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat. Eur J Cancer. 2001;37:2457–63. doi: 10.1016/s0959-8049(01)00300-8.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Distribution of patients by the scheme of drugs used

Download (58KB)

Copyright (c) 2024 Bionika Media