The relationship of cardiovascular disease with increased intestinal permeability: results from scientific and controlled clinical trials. Focus on the potential of rebamipide


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Today, more and more data are emerging indicating the role of disturbances in the structure of the intestinal barrier in patients with cardiovascular diseases. This is due to the fact that in the settings of increase in intestinal permeability, translocation of biologically active substances, bacterial endotoxins, their antigenic determinants and microorganisms themselves from the intestinal lumen make take place. This entails the stimulation of the processes of atherogenesis, low degree inflammation and even directly damage cardio-myocytes due to the expression on them of receptors with which lipopolysaccharides of bacterial origin can bind, leading to damage to the myocardium, reducing its contractility and stimulating pro-inflammatory shift. Intestinal endotoxins are capable to induce oxidative modification of low-density lipoproteins, damage to endothelial cells and even stimulating the recruitment of inflammatory cells, which ultimately can initiate and aggravate atherosclerotic lesions of the vascular bed. Many factors play are important in increasing the permeability of the intestinal wall, however, the pivotal role is given to the disturbance of the structure and expression of tight junction proteins: occludin, claudins, tricellulin and Zonula occludens - they provide the maintenance of the barrier function in the enterocytes intercellular contacts. Currently, the possibilities of drug correction of increasing the intestinal permeability are being actively studied. A new drug capable of restoring the disturbed permeability of the intestinal barrier is rebamipide, which acts throughout the whole gastrointestinal tract, in contrast to gastro- and enteroprotectors, and allows directly restoring the structure of tight contacts. Rebamipide also has a whole range of additional pleutopathic effects, including stimulating mucus secretion, improving mucosal microcirculation, and even positively affecting components of the gut microbiome. In addition, according to the available research data, the effect of rebamipide may go beyond the gastrointestinal tract, in view of the fact that the anti-atherosclerotic and anti-inflammatory activity of the drug has been demonstrated, which consists in a decrease in the amount of pro-inflammatory cytokines and a histologically verified decrease in the number of foci of atherosclerotic lesions of the major arteries. Special attention should be paid to the excellent safety profile of rebamipide therapy - its appointment, even in doses significantly exceeding therapeutic ones, was not accompanied by the development of unwanted drug reactions. Based on this, the given drug can be considered not only as a tool for directly protecting the gastrointestinal tract, but also as a promising drug for complex therapy of cardiac patients.

Full Text

Restricted Access

About the authors

Olga D. Ostroumova

Russian Medical Academy of Continuous Professional Education; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: ostroumova.olga@mail.ru
Dr. Sci. (Med.), Professor, Head of the Department of Therapy and Polymorbid Pathology, Russian Medical Academy of Continuous Professional Education; Professor of the Department of Clinical Pharmacology and Propedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University Moscow, Russia

A. I Kochetkov

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

E. E Pavleeva

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Moscow, Russia

O. V Golovina

Russian Medical Academy of Continuous Professional Education

Moscow, Russia

N. A Arablinsky

Pirogov Russian National Research Medical University (Pirogov Medical University)

Moscow, Russia

References

  1. Lewis C.V., Taylor W.R. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease. Am J Physiol Heart Circ Physiol. 2020;319(6):H1227-33. Doi: 10.1152/ ajpheart.00612.2020.
  2. Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation? Inflamm Intest Dis. 2016;1(3):135-45. doi: 10.1159/000447252.
  3. Tr0seid M., Andersen G.O., Broch K., Hov J.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine. 2020;52:102649. doi: 10.1016/j.ebiom.2020.102649.
  4. Bischoff S.C., Barbara G., Buurman W., et al. Intestinal permeability - a new target for disease prevention and therapy. BMC. Gastroenterol. 2014;14:189. doi: 10.1186/s12876-014-0189-7.
  5. Groschwitz K.R., Hogan S.P Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3-20; quiz 21-2. Doi: 10.1016/j. jaci.2009.05.038.
  6. Raleigh D.R., Marchiando A.M., Zhang Y., et al. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell. 2010;21(7):1200-13. doi: 10.1091/mbc.e09-08-0734.
  7. Ulluwishewa D., Anderson R.C., McNabb W.C., et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141(5):769-76. Doi: 10.3945/ jn.110.135657.
  8. Johansson M.E., Thomsson K.A., Hansson G.C. Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the Fcgbp protein. J Proteome Res. 2009;8(7):3549-57. doi: 10.1021/pr9002504.
  9. Feng Y., Huang Y., Wang Y., et al. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS One. 2019;14(6):e0218384. doi: 10.1371/journal. pone.0218384.
  10. Li J.Y., Chassaing B., Tyagi A.M., et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126(6):2049-63. Doi: 10.1172/ JCI86062
  11. Rao R.K., Basuroy S., Rao V.U., et al. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J. 2002;368(Pt. 2):471-81. Doi: 10.1042/ BJ20011804.
  12. Menard S., Cerf-Bensussan N., Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 2010;3(3):247-59. Doi: 10.1038/ mi.2010.5.
  13. Spadoni I., Zagato E., Bertocchi A., et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Sci. 2015;350(6262):830-34. doi: 10.1126/science.aad0135.
  14. Battson M.L., Lee D.M., Li Puma L.C., et al. Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity. Am J Physiol Heart Circ Physiol. 2019;317(6):H1210-20. doi: 10.1152/ajpheart.00346.2019.
  15. Sandek A, Swidsinski A., Schroedl W., et al. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol. 2014;64(11):1092-102. Doi: 10.1016/j. jacc.2014.06.1179.
  16. Zhou X., Li J., Guo J., et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 2018;6(1):66. doi: 10.1186/s40168-018-0441-4.
  17. Zhang L., Wang F., Wang J., et al. Intestinal fatty acid-binding protein mediates atherosclerotic progress through increasing intestinal inflammation and permeability. J Cell Mol Med. 2020;24(9):5205-12. doi: 10.1111/jcmm.15173.
  18. Pasini E., Aquilani R., Testa C., et al. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC. Heart Fail. 2016;4(3):220-27. Doi: 10.1016/j. jchf.2015.10.009.
  19. Li C, Gao M., Zhang W., et al. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease. Sci Rep. 2016;6:29142. doi: 10.1038/srep29142.
  20. Ghosh S.S., Bie J., Wang J., Ghosh S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation. PLoS One. 2014;9(9):e108577. doi: 10.1371/journal. pone.0108577.
  21. Li J., Zhao F., Wang Y., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi: 10.1186/s40168-016-0222-x.
  22. Ejtahed H.S., Ardeshirlarijani E., Tabatabaei-Malazy O., et al. Effect of probiotic foods and supplements on blood pressure: a systematic review of meta-analyses studies of controlled trials. J Diab Metab Disord. 2020;19(1):617-23. Doi: 10.1007/ s40200-020-00525-0.
  23. Kim S., Goel R., Kumar A., et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci. (Lond). 2018;132(6):701-18. doi: 10.1042/CS20180087.
  24. Santisteban M.M., Qi Y., Zubcevic J., et al. Hypertension-Linked Pathophysiological Alterations in the Gut. Circ Res. 2017;120(2):312-23. doi: 10.1161/CIRCRESAHA.116.309006.
  25. Hu J., Luo H., Wang J., Tang W., Lu J., Wu S., Xiong et al. Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice. Exp Mol Med. 2017;49(8):e370. Doi: 10.1038/ emm.2017.122.
  26. Battson M.L., Lee D.M., Jarrell D.K., et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. 2018;314(5):E468-77. doi: 10.1152/ajpendo.00187.2017.
  27. Rogler G., Rosano G. The heart and the gut. Eur Heart J. 2014;35(7):426-30. Doi: 10.1093/ eurheartj/eht271.
  28. Wang Z., Klipfell E., Bennett B.J., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63. Doi: 10.1038/ nature09922.
  29. Konter J.M., Parker J.L., Baez E., et al. Adiponectin attenuates lipopolysaccharide-induced acute lung injury through suppression of endothelial cell activation. J Immunol. 2012;188(2):854-63. doi: 10.4049/jimmunol.1100426.
  30. Cui L., Zhao T., Hu H., et al. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. Biomed Res Int. 2017;20 1 7:3796359. doi: 10.1155/2017/3796359.
  31. Jie Z., Xia H., Zhong S.L., et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. Doi: 10.1038/ s41467-017-00900-1.
  32. Zhu Q., Gao R., Zhang Y., et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics. 2018;50(10):893-903. doi: 10.1152/physiolgenomics.00070.2018.
  33. Karlsson F.H., Fak F., Nookaew I., et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245. doi: 10.1038/ncomms2266.
  34. Roediger W.E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterol. 1982;83(2):424-29.
  35. Marques F.Z., Nelson E., Chu P.Y., et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation. 2017;135(10):964-77. doi: 10.1161/CIRCULATIONAHA.116.024545.
  36. Arutyunov G.E., Kostyukevich O.I., Serov R.A., et al. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure. Int J Cardiol. 2008;125(2):240-45. doi: 10.1016/j.ijcard.2007.11.103.
  37. Sandek A., Bauditz J., Swidsinski A., et al. et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561-69. doi: 10.1016/j.jacc.2007.07.016.
  38. Anker S.D., Egerer K.R., Volk H.D., et al. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol. 1997;79(10):1426-30. doi: 10.1016/s0002-9149(97)00159-8.
  39. Kumar A., Haery C., Parrillo J.E. Myocardial dysfunction in septic shock: Part I. Clinical manifestation of cardiovascular dysfunction. J Cardiothorac Vasc Anesth. 2001;15(3):364-76. doi: 10.1053/jcan.2001.22317.
  40. Gao C.Q., Sawicki G., Suarez-Pinzon W.L., et al. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res. 2003;57(2):426-33. doi: 10.1016/s0008-6363(02)00719-8.
  41. Genth-Zotz S., von Haehling S., Bolger A.P, et al. Pathophysiologic quantities of endotoxin-induced tumor necrosis factor-alpha release in whole blood from patients with chronic heart failure. Am J Cardiol. 2002;90(11):1226-30. Doi: 10.1016/ s0002-9149(02)02839-4.
  42. Peschel T., Schönauer M., Thiele H., et al. Niebauer J. Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail. 2003;5(5):609-14. doi: 10.1016/s1388-9842(03)00104-1. Erratum in: Eur J Heart Fail. 20041;6(2):245.
  43. Naito Y., Yoshikawa T. Rebamipide: a gastrointestinal protective drug with pleiotropic activities. Expert. Rev. Gastroenterol. Hepatol. 2010;4(3):261-70. doi: 10.1586/egh.10.25.
  44. Lai Y., Zhong W., Yu T., et al. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of ß-Catenin. PLoS One. 2015;10(7):e0132031. doi: 10.1371/journal.pone.0132031.
  45. Watanabe T., Takeuchi T., Handa O., et al. A multicenter, randomized, double-blind, placebo-controlled trial of high-dose rebamipide treatment for low-dose aspirin-induced moderate-to-severe small intestinal damage. PLoS One. 2015;10(4):e0122330. doi: 10.1371/journal. pone.0122330.
  46. Yasuda-Onozawa Y., Handa O., Naito Y., et al. Rebamipide upregulates mucin secretion of intestinal goblet cells via Akt phosphorylation. Mol Med Rep. 2017;16(6):8216-22. Doi: 10.3892/ mmr. 2017.7647.
  47. Akagi S., Fujiwara T., Nishida M., et al. The effectiveness of rebamipide mouthwash therapy for radiotherapy and chemoradiotherapy-induced oral mucositis in patients with head and neck cancer: a systematic review and meta-analysis. J Pharm Health Care Sci. 2019;5:16. Doi: 10.1186/ s40780-019-0146-2.
  48. Tarnawski A.S., Chai J., Pai R., Chiou S.K. Rebamipide activates genes encoding angiogenic growth factors and Cox2 and stimulates angiogenesis: a key to its ulcer healing action? Dig Dis Sei. 2004;49(2):202-9. doi: 10.1023/b:ddas.0000017439.60943.5c.
  49. Jhun J., Kwon J.E., Kim S.Y, et al. Rebamipide ameliorates atherosclerosis by controlling lipid metabolism and inflammation. PLoS One. 2017;12(2):e0171674. doi: 10.1371/journal. pone.0171674.
  50. Choe J.Y., Park K.Y., Lee S.J., et al. Rebamipide inhibits tumor necrosis factor-a-induced interleukin-8 expression by suppressing the NF-kB signal pathway in human umbilical vein endothelial cells. Inflamm Res. 2010;59(12):1019-26. doi: 10.1007/s00011-010-0221-5.
  51. Tanigawa T., Watanabe T., Otani K., et al. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of a-defensin 5. Eur J Pharmacol. 2013;704(1-3):64-9. doi: 10.1016/j.ejphar.2013.02.010

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies