СОСТОЯНИЕ КОСТНОЙ ТКАНИ ПРИ САХАРНОМ ДИАБЕТЕ 2 ТИПА


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассматривается влияние многочисленных факторов, ассоциирующихся с сахарным диабетом 2 типа (СД2), на состояние костной ткани (КТ). Подчеркивается, что исследования последних лет чаще обнаруживают повышение минеральной плотности КТ у больных СД2. В то же время не вызывает сомнений повышенный риск переломов, как вертебральных, так и проксимального отдела шейки бедренной кости, у этой категории больных. Последнее обстоятельство стало определяющим в рубрикации СД2 как фактора риска остеопороза. В связи с этим особое значение приобретает широкий спектр патогенетических воздействий на состояние КТ у больных диабетом. Малоизученным и спорным остается влияние основных характеристик СД: параметров углеводного обмена, длительности заболевания, особенностей сахароснижающей терапии на КТ, особенно в период перименопаузы, что требует дальнейшего изучения данной проблемы.

Полный текст

Доступ закрыт

Об авторах

Л. А Руяткина

Новосибирский государственный медицинский университет

д.м.н., профессор

А. В Ломова

Новосибирский государственный медицинский университет

Д. С Руяткин

Новосибирский государственный медицинский университет

к.м.н.

Список литературы

  1. Рожинская Л.Я. Системный остеопороз: практическое руководство для врачей / 2-е изд., перераб. и доп. М., 2000. 196 с.
  2. Lipscombe LL, Jamal SA, Booth GL, Hawker GA. The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care 2007;30(4):835-41.
  3. Лазебник Л.Б., Маличенко С. Б. Первичный остеопороз: клиника, диагностика и лечение //Лечащий врач 1999. № 7.
  4. Картамышева Н.Н., Чумакова О.В. Костное ремоделирование как модель межклеточных взаимодействий (Обзор литературы) // Нефрология и диализ 2004. Т. 6. № 1.
  5. Рожинская Л.Я. Остеопенический синдром при заболеваниях эндокринной системы и постменопаузальный остеопороз. Дисс. докт. мед. наук. М., 2001. 318 с.
  6. Hofbauer L, Rachner Т. Die rolle des RA N K/RANKL/O PG Signalwegs in Knochenstoffwechsel. Forbildung Osteologie 2010;3(5):118-21.
  7. Sagalovsky S, Schnert М. RANKL-RANK-OPG system and bone remodeling: a new approach on the treatment of osteoporosis. Clin Exptl Pathol 2011;10(2):146-53.
  8. Ma L, Oei L, Jiang L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 2012;27(5):319-32.
  9. Meema HE, Meema S. The relationship of diabetes mellitus and body weight to osteoporosis in elderly females. Can Med Assoc J 1967;96(3):132-39.
  10. Johnston CC Jr, Hui SL, Longcope C. Bone mass and sex steroid concentrations in postmenopausal Caucasian diabetics. Metabolism 1985;34(6):544-50.
  11. Weinstock RS, Goland RS, Shane E, et al. Bone mineral density in women with type II diabetes mellitus. J Bone Miner Res 1989;4(1):97-101.
  12. Giacca A, Fassina A, Caviezel F, et al. Bone mineral density in diabetes mellitus. Bone 1988;9(1):29-36.
  13. Wakasugi M, Wakao R, Tawata M, et al. Bone mineral density measured by dual energy x-ray absorptiometry in patients with noninsulin-dependent diabetes mellitus. Bone 1993;14(1):29-33.
  14. Sosa M, Dominguez M, Navarro MC, et al. Bone mineral metabolism is normal in noninsulin-dependent diabetes mellitus. J Diabetes Complications 1996;10(4):201-5.
  15. Hampson G, Evans C, Petitt RJ, et al. Bone mineral density, collagen type 1 alpha 1 genotypes and bone turnover in premenopausal women with diabetes mellitus. Diabetologia 1998;41(11):1314-20.
  16. Gregorio F, Cristallini S, Santeusanio F, Filipponi P, Fumelli P. Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pract 1994;23(1):43-54.
  17. Majima T, Komatsu Y, Yamada T, et al. Decreased bone mineral density at the distal radius, but not at the lumbar spine or the femoral neck, in Japanese type 2 diabetic patients. Osteoporos Int 2005;16(8):907-13.
  18. Zhou Y, Li Y, Zhang D, Wang J, Yang H. Prevalence and predictors of osteopenia and osteoporosis in postmenopausal Chinese women with type 2 diabetes. Diabetes Res Clin Pract 2010 Dec;90(3):261-69.
  19. Gerdhem P, Akesson K. Rates of fracture in participants and non-participants in the Osteoporosis Prospective Risk Assessment study. J Bone Joint Surg Br 2007;89(12):1627-31.
  20. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes - a meta-analysis. Osteoporos Int 2007;18(4):427-44.
  21. Garnero P, Vergnaud P, Hoyle N. Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem 2008;54(1):188-96.
  22. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T. Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 2007;80(6):353-58.
  23. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 2009;24(4):702-09.
  24. Robins SP, Woitge H, Hesley R, et al. Direct, enzyme-linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. J Bone Miner Res 1994;9(10):1643-49.
  25. Iglesias P, Arrieta F, Pinera M, et al. Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and beta-Cross-Laps in obese subjects with varying degrees of glucose tolerance. Clin Endocrinol (Oxf) 2011;75(2):184-88.
  26. Shu A, Yin MT, Stein E, et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int 2012;23(2):635-41.
  27. Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 2009;94(1):45-9.
  28. Hwang YC, Jeong IK, Ahn KJ, Chung HY. Circulating osteocalcin level is associated with improved glucose tolerance, insulin secretion and sensitivity independent of the plasma adiponectin level. Osteoporos Int 2012;23(4): 1337-42.
  29. Rosato MT, Schneider SH, Shapses SA. Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus. Calcif Tissue Int 1998;63(2):107-11.
  30. Okazaki R, Totsuka Y, Hamano K, et al. Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 1997;82(9):2915-20.
  31. Miazgowski T, Noworyta-Zietara M, Safranow K, Ziemak J, Widecka K. Serum adiponectin, bone mineral density and bone turnover markers in post-menopausal women with newly diagnosed Type 2 diabetes: a 12-month follow-up. Diabet Med 2012;29(1):62-9.
  32. Jehle PM, Jehle DR, Mohan S, B hm BO. Serum levels of insulin-like growth factor system components and relationship to bone metabolism in Type 1 and Type 2 diabetes mellitus patients. J Endocrinol 1998;159(2):297-306.
  33. Isidro ML, Ruano B. Bone disease in diabetes. Curr Diabetes Rev 2010;6(3):144-55.
  34. Maor G, Karnieli E. The insulin-sensitive glucose transporter (GLUT4) is involved in early bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor. Endocrinology 1999;140(4): 1841-51
  35. Barrett-Connor E, Kritz-Silverstein D. Does hyperinsulinemia preserve bone? Diabetes Care 1996;19(12):1388-92.
  36. Sayers A, Lawlor DA, Sattar N, Tobias JH. The association between insulin levels and cortical bone: findings from a cross-sectional analysis of pQCT parameters in adolescents. J Bone Miner Res 2012;27(3):610-18.
  37. Fukunaga Y, Minamikawa J, Inoue D, Koshiyama H. Does insulin use increase bone mineral density in patients with non-insulindependent diabetes mellitus? Arch Intern Med 1997;157(22):2668-69.
  38. Dennison EM, Syddall HE, Aihie Sayer A, et al. Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study: evidence for an indirect effect of insulin resistance? Diabetologia 2004;47(11):1963-68.
  39. Garg R, Chen Z, Beck T, et al. Hip geometry in diabetic women: implications for fracture risk. Metabolism 2012;61(12):1756-62.
  40. Yamagishi S. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr Drug Targets 2011;12(14):2096-102.
  41. Yamamoto M, Yamaguchi T, Yamauchi M, Sugimoto T. Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone min eral density in patients with type 2 diabetes. Diabetes Care 2009;32(12):2263-68.
  42. Kwon DJ, Kim JH, Chung KW, et al. Bone mineral density of the spine using dual energy X-ray absorptiometry in patients with non-insulindependent diabetes mellitus. J Obstet Gynaecol Res 1996;22(2):157-62.
  43. Cutrim DM, Pereira FA, de Paula FJ, Foss MC. Lack of relationship between glycemic control and bone mineral density in type 2 diabetes mellitus. Braz J Med Biol Res 2007;40(2):221-27.
  44. Puar TH, Khoo JJ, Cho LW, et al. Association between glycemic control and hip fracture. J Am Geriatr Soc 2012;60(8):1493-97.
  45. Soderstrom LH, Johnson SP, Diaz VA, Mainous AG 3rd. Association between vitamin D and diabetic neuropathy in a nationally representative sample: results from 2001-2004 NHANES. Diabet Med 2012;29(1):50-5.
  46. Shehab D, Al-Jarallah K, Mojiminiyi OA, Al Mohamedy H, Abdella NA. Does Vitamin D deficiency play a role in peripheral neuropathy in Type 2 diabetes? Diabet Med 2012; 29(1):43-9.
  47. Forst T, Pftzner A, Kann P, et al. Peripheral osteopenia in adult patients with insulindependent diabetes mellitus. Diabet Med 1995t;12(10):874-79.
  48. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ. Risk factors for fractures of the wrist, shoulder and ankle: the Blue Mountains Eye Study. Osteoporos Int 2002;13(6):513-18.
  49. Kiel DP, Kauppila LI, Cupples LA, et al. Bone loss and the progression of abdominal aortic calcification over a 25-year period: the Framingham heart study. Calcif Tissue Int 2001;68:271-76.
  50. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V. Aorticcalcification and the risk of osteoporosis and fractures. J ClinEndocrinol Metab 2004;89:4246-53.
  51. Bagger YZ, Tanko LB, Alexandersen P, Qin G, Christiansen C, Prospective Epidemiological Risk Factors Study Group. Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med 2006;259:598-605.
  52. Tanko LB, Bagger YZ, Christiansen C. Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int 2003;73:15-20.
  53. Doherty TM, Fitzpatrick LA, Inoue D, et al. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 2004;25:629-72.
  54. Hofbauer LC, Brueck CC, Shanahan CM, Schoppet M, Dobnig H. Vascular calcification and osteoporosis--from clinical observation towards molecular understanding. Osteoporos Int 2007;18(3):251-59.
  55. Bauer DC. HMG CoA reductase inhibitors and the skeleton: a comprehensive review. Osteoporos Int 2003;14(4):273-82.
  56. Шишкова В.Н. Ожирение и остеопороз (обзор) // Остеопороз и остеопатии 2011. № 1.
  57. Muscogiuri G, Sorice GP, Prioletta A, et al. 25-Hydroxyvitamin D concentration correlates with insulin-sensitivity and BMI in obesity. Obesity (Silver Spring) 2010;18(10): 1906-10.
  58. Nicodemus KK, Folsom AR; Iowa Women's Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001;24(7): 1192-97.
  59. Kanazawa I, Yamaguchi T, Yano S, et al. Baseline atherosclerosis parameter could assess the risk of bone loss during pioglitazone treatment in type 2 diabetes mellitus. Osteoporos Int 2010;21(12):2013-18.
  60. Schurman L, McCarthy AD, Sedlinsky C, et al. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes 2008;116(6):333-40.
  61. Bollag RJ, Zhong Q, Ding KH, et al. Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol 2001;177(1-2):35-41.
  62. Monami M, Cresci B, Colombini A, et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 2008;31(2):199-203.
  63. Zheng SX, Vrindts Y, Lopez M, et al. Increase in cytokine production (IL-1 beta, IL-6, TNF-alpha but not IFN-gamma, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas 1997;26(1):63-71.
  64. Bellido T, Jilka RL, Boyce BF, et al. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 1995;95(6):2886-95.
  65. Poli V, Balena R, Fattori E, et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J 1994;13(5):1189-96.
  66. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 2005;115(2):282-90.
  67. Kitaura H, Zhou P, Kim HJ, et al. M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest 2005;115(12):3418-27.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах