SOSTOYaNIE KOSTNOY TKANI PRI SAKhARNOM DIABETE 2 TIPA


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article considers the influence of many factors associated with type 2 diabetes mellitus (DM2) on bone status (BS). It is emphasized that recent studies have often shown increasing bone mineral density in DM2 patients. At the same time, an increased risk of fractures, both vertebral and proximal femoral neck, in these patients is also practically assured. The latter fact was the determining factor in the categorization of DM2 as a risk factor for osteoporosis. In this connection, wide range of pathogenetical effects on the bone status in DM2 patients has a special importance. Controversial impact of the major characteristics of DM, such as parameters of carbohydrate metabolism, duration of disease, features of influence of glucose-lowering therapy on BS, especially during perimenopause, remains poorly understood and requires further examination of this problem.

Full Text

Restricted Access

References

  1. Рожинская Л.Я. Системный остеопороз: практическое руководство для врачей / 2-е изд., перераб. и доп. М., 2000. 196 с.
  2. Lipscombe LL, Jamal SA, Booth GL, Hawker GA. The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care 2007;30(4):835-41.
  3. Лазебник Л.Б., Маличенко С. Б. Первичный остеопороз: клиника, диагностика и лечение //Лечащий врач 1999. № 7.
  4. Картамышева Н.Н., Чумакова О.В. Костное ремоделирование как модель межклеточных взаимодействий (Обзор литературы) // Нефрология и диализ 2004. Т. 6. № 1.
  5. Рожинская Л.Я. Остеопенический синдром при заболеваниях эндокринной системы и постменопаузальный остеопороз. Дисс. докт. мед. наук. М., 2001. 318 с.
  6. Hofbauer L, Rachner Т. Die rolle des RA N K/RANKL/O PG Signalwegs in Knochenstoffwechsel. Forbildung Osteologie 2010;3(5):118-21.
  7. Sagalovsky S, Schnert М. RANKL-RANK-OPG system and bone remodeling: a new approach on the treatment of osteoporosis. Clin Exptl Pathol 2011;10(2):146-53.
  8. Ma L, Oei L, Jiang L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 2012;27(5):319-32.
  9. Meema HE, Meema S. The relationship of diabetes mellitus and body weight to osteoporosis in elderly females. Can Med Assoc J 1967;96(3):132-39.
  10. Johnston CC Jr, Hui SL, Longcope C. Bone mass and sex steroid concentrations in postmenopausal Caucasian diabetics. Metabolism 1985;34(6):544-50.
  11. Weinstock RS, Goland RS, Shane E, et al. Bone mineral density in women with type II diabetes mellitus. J Bone Miner Res 1989;4(1):97-101.
  12. Giacca A, Fassina A, Caviezel F, et al. Bone mineral density in diabetes mellitus. Bone 1988;9(1):29-36.
  13. Wakasugi M, Wakao R, Tawata M, et al. Bone mineral density measured by dual energy x-ray absorptiometry in patients with noninsulin-dependent diabetes mellitus. Bone 1993;14(1):29-33.
  14. Sosa M, Dominguez M, Navarro MC, et al. Bone mineral metabolism is normal in noninsulin-dependent diabetes mellitus. J Diabetes Complications 1996;10(4):201-5.
  15. Hampson G, Evans C, Petitt RJ, et al. Bone mineral density, collagen type 1 alpha 1 genotypes and bone turnover in premenopausal women with diabetes mellitus. Diabetologia 1998;41(11):1314-20.
  16. Gregorio F, Cristallini S, Santeusanio F, Filipponi P, Fumelli P. Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pract 1994;23(1):43-54.
  17. Majima T, Komatsu Y, Yamada T, et al. Decreased bone mineral density at the distal radius, but not at the lumbar spine or the femoral neck, in Japanese type 2 diabetic patients. Osteoporos Int 2005;16(8):907-13.
  18. Zhou Y, Li Y, Zhang D, Wang J, Yang H. Prevalence and predictors of osteopenia and osteoporosis in postmenopausal Chinese women with type 2 diabetes. Diabetes Res Clin Pract 2010 Dec;90(3):261-69.
  19. Gerdhem P, Akesson K. Rates of fracture in participants and non-participants in the Osteoporosis Prospective Risk Assessment study. J Bone Joint Surg Br 2007;89(12):1627-31.
  20. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes - a meta-analysis. Osteoporos Int 2007;18(4):427-44.
  21. Garnero P, Vergnaud P, Hoyle N. Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem 2008;54(1):188-96.
  22. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T. Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 2007;80(6):353-58.
  23. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 2009;24(4):702-09.
  24. Robins SP, Woitge H, Hesley R, et al. Direct, enzyme-linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. J Bone Miner Res 1994;9(10):1643-49.
  25. Iglesias P, Arrieta F, Pinera M, et al. Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and beta-Cross-Laps in obese subjects with varying degrees of glucose tolerance. Clin Endocrinol (Oxf) 2011;75(2):184-88.
  26. Shu A, Yin MT, Stein E, et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int 2012;23(2):635-41.
  27. Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 2009;94(1):45-9.
  28. Hwang YC, Jeong IK, Ahn KJ, Chung HY. Circulating osteocalcin level is associated with improved glucose tolerance, insulin secretion and sensitivity independent of the plasma adiponectin level. Osteoporos Int 2012;23(4): 1337-42.
  29. Rosato MT, Schneider SH, Shapses SA. Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus. Calcif Tissue Int 1998;63(2):107-11.
  30. Okazaki R, Totsuka Y, Hamano K, et al. Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 1997;82(9):2915-20.
  31. Miazgowski T, Noworyta-Zietara M, Safranow K, Ziemak J, Widecka K. Serum adiponectin, bone mineral density and bone turnover markers in post-menopausal women with newly diagnosed Type 2 diabetes: a 12-month follow-up. Diabet Med 2012;29(1):62-9.
  32. Jehle PM, Jehle DR, Mohan S, B hm BO. Serum levels of insulin-like growth factor system components and relationship to bone metabolism in Type 1 and Type 2 diabetes mellitus patients. J Endocrinol 1998;159(2):297-306.
  33. Isidro ML, Ruano B. Bone disease in diabetes. Curr Diabetes Rev 2010;6(3):144-55.
  34. Maor G, Karnieli E. The insulin-sensitive glucose transporter (GLUT4) is involved in early bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor. Endocrinology 1999;140(4): 1841-51
  35. Barrett-Connor E, Kritz-Silverstein D. Does hyperinsulinemia preserve bone? Diabetes Care 1996;19(12):1388-92.
  36. Sayers A, Lawlor DA, Sattar N, Tobias JH. The association between insulin levels and cortical bone: findings from a cross-sectional analysis of pQCT parameters in adolescents. J Bone Miner Res 2012;27(3):610-18.
  37. Fukunaga Y, Minamikawa J, Inoue D, Koshiyama H. Does insulin use increase bone mineral density in patients with non-insulindependent diabetes mellitus? Arch Intern Med 1997;157(22):2668-69.
  38. Dennison EM, Syddall HE, Aihie Sayer A, et al. Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study: evidence for an indirect effect of insulin resistance? Diabetologia 2004;47(11):1963-68.
  39. Garg R, Chen Z, Beck T, et al. Hip geometry in diabetic women: implications for fracture risk. Metabolism 2012;61(12):1756-62.
  40. Yamagishi S. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr Drug Targets 2011;12(14):2096-102.
  41. Yamamoto M, Yamaguchi T, Yamauchi M, Sugimoto T. Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone min eral density in patients with type 2 diabetes. Diabetes Care 2009;32(12):2263-68.
  42. Kwon DJ, Kim JH, Chung KW, et al. Bone mineral density of the spine using dual energy X-ray absorptiometry in patients with non-insulindependent diabetes mellitus. J Obstet Gynaecol Res 1996;22(2):157-62.
  43. Cutrim DM, Pereira FA, de Paula FJ, Foss MC. Lack of relationship between glycemic control and bone mineral density in type 2 diabetes mellitus. Braz J Med Biol Res 2007;40(2):221-27.
  44. Puar TH, Khoo JJ, Cho LW, et al. Association between glycemic control and hip fracture. J Am Geriatr Soc 2012;60(8):1493-97.
  45. Soderstrom LH, Johnson SP, Diaz VA, Mainous AG 3rd. Association between vitamin D and diabetic neuropathy in a nationally representative sample: results from 2001-2004 NHANES. Diabet Med 2012;29(1):50-5.
  46. Shehab D, Al-Jarallah K, Mojiminiyi OA, Al Mohamedy H, Abdella NA. Does Vitamin D deficiency play a role in peripheral neuropathy in Type 2 diabetes? Diabet Med 2012; 29(1):43-9.
  47. Forst T, Pftzner A, Kann P, et al. Peripheral osteopenia in adult patients with insulindependent diabetes mellitus. Diabet Med 1995t;12(10):874-79.
  48. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ. Risk factors for fractures of the wrist, shoulder and ankle: the Blue Mountains Eye Study. Osteoporos Int 2002;13(6):513-18.
  49. Kiel DP, Kauppila LI, Cupples LA, et al. Bone loss and the progression of abdominal aortic calcification over a 25-year period: the Framingham heart study. Calcif Tissue Int 2001;68:271-76.
  50. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V. Aorticcalcification and the risk of osteoporosis and fractures. J ClinEndocrinol Metab 2004;89:4246-53.
  51. Bagger YZ, Tanko LB, Alexandersen P, Qin G, Christiansen C, Prospective Epidemiological Risk Factors Study Group. Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med 2006;259:598-605.
  52. Tanko LB, Bagger YZ, Christiansen C. Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int 2003;73:15-20.
  53. Doherty TM, Fitzpatrick LA, Inoue D, et al. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 2004;25:629-72.
  54. Hofbauer LC, Brueck CC, Shanahan CM, Schoppet M, Dobnig H. Vascular calcification and osteoporosis--from clinical observation towards molecular understanding. Osteoporos Int 2007;18(3):251-59.
  55. Bauer DC. HMG CoA reductase inhibitors and the skeleton: a comprehensive review. Osteoporos Int 2003;14(4):273-82.
  56. Шишкова В.Н. Ожирение и остеопороз (обзор) // Остеопороз и остеопатии 2011. № 1.
  57. Muscogiuri G, Sorice GP, Prioletta A, et al. 25-Hydroxyvitamin D concentration correlates with insulin-sensitivity and BMI in obesity. Obesity (Silver Spring) 2010;18(10): 1906-10.
  58. Nicodemus KK, Folsom AR; Iowa Women's Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001;24(7): 1192-97.
  59. Kanazawa I, Yamaguchi T, Yano S, et al. Baseline atherosclerosis parameter could assess the risk of bone loss during pioglitazone treatment in type 2 diabetes mellitus. Osteoporos Int 2010;21(12):2013-18.
  60. Schurman L, McCarthy AD, Sedlinsky C, et al. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes 2008;116(6):333-40.
  61. Bollag RJ, Zhong Q, Ding KH, et al. Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol 2001;177(1-2):35-41.
  62. Monami M, Cresci B, Colombini A, et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 2008;31(2):199-203.
  63. Zheng SX, Vrindts Y, Lopez M, et al. Increase in cytokine production (IL-1 beta, IL-6, TNF-alpha but not IFN-gamma, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas 1997;26(1):63-71.
  64. Bellido T, Jilka RL, Boyce BF, et al. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 1995;95(6):2886-95.
  65. Poli V, Balena R, Fattori E, et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J 1994;13(5):1189-96.
  66. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 2005;115(2):282-90.
  67. Kitaura H, Zhou P, Kim HJ, et al. M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest 2005;115(12):3418-27.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies