Проблема устойчивости к карбапенемным антибиотикам: распространение карбапенемаз в мире и России, эпидемиология, диагностика, возможности лечения


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассматривается проблема устойчивости бактерий к β-лактамным антибиотикам, в частности к карбапенемам. Представлены механизмы формирования антимикробной резистентности (модификация мишени, снижение проницаемости внешних структур, эффлюкс, инактивация). Подчеркивается, что ферментативный гидролиз относится к основным механизмам устойчивости бактерий к β-лактамным антибиотикам. К настоящему времени описано более 1000 β-лактамаз, различающихся по субстратной специфичности, чувствительности к действию ингибиторов, локализации генов. Крайне широкое распространение бета-лактамаз расширенного спектра привело к резкому снижению клинического значения цефалоспоринов III-IV поколений. В сложившейся ситуации единственными надежными средствами антибактериальной терапии долгое время были карбапенемы, но ситуация с резистентностью к ним принципиально изменилась после появления ферментов карбапенемаз, гены которых локализованы на мобильных элементах. Рассматриваются различные классы карбапенемаз, представлена информация об их распространенности в России, лабораторной детекции карбапенемаз и возможностях терапии инфекций, вызванных их продуцентами. Замедлить распространение продуцентов карбапенемаз может разработка и повсеместное внедрение в практику стратегии, включающей как этапы исследования на носительство карбапенемаз, внедрение методов выявления продукции карбапенемаз в базовую практику бактериологических лабораторий, так и мероприятия по локализации и предотвращению внутрибольничных вспышек.

Полный текст

Доступ закрыт

Об авторах

В. А Агеевец

ФГБУ НИИ детских инфекций ФМБА России; Санкт -Петербургский государственный университет

мл.н.с. отдела медицинской микробиологии и молекулярной эпидемиологии

И. В Лазарева

ФГБУ НИИ детских инфекций ФМБА России

к.м.н., н.с. отдела медицинской микробиологии и молекулярной эпидемиологии

С. В Сидоренко

ФГБУ НИИ детских инфекций ФМБА России

Email: sidorserg@gmail.com
д.м.н., проф., зав. отделом медицинской микробиологии и молекулярной эпидемиологии

Список литературы

  1. Livermore D.M., Williams J.D. Mode of action and mechanisms of bacterial resistance. In: Antibiotics in Laboratory Medicine. 4th ed, edition. Lorian V. eds. Baltimore: Williams and Wilkins, 1996. P. 502-77.
  2. Laible G., Spratt B.G., Hakenbeck R. Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 1991;5:1993-2002.
  3. Mussi M.A., Limansky A.S, Viale A.M. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter bau-mannii: natural insertional inactivation of a gene encoding a member of a novel family of betabarrel outer membrane proteins. Antimicrob. Agents Chemother. 2005;49:1432-40.
  4. Hopkins J.M., Towner K.J. Enhanced resistance to cefotaxime and imipenem associated with outer membrane protein alterations in Enterobacter aerogenes. J. Antimicrob. Chemother. 1990;25:49-55.
  5. Doumith M., Ellington M.J., Livermore D.M., Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J. Antimicrob. Chemother. 2009;63:659-67.
  6. Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. 2004;10:12-26.
  7. Saito K., Yoneyama H., Nakae T. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. FEMS Microbiol. Lett. 1999;179:67-72.
  8. Srikumar R., Paul C.J., Poole K. Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-oprM multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 2000;182:1410-14.
  9. Bush K., Jacoby G.A. Updated Functional Classification of {beta}-Lactamases. Antimicrob. Agents Chemother. 2010;54:969-76.
  10. Ambler R.P., Coulson A.F., Frere J.M., Ghuysen J.M., Joris B., Forsman M., Levesque R.C., Tiraby G., Waley S.G. A standard numbering scheme for the class A beta-lactamases. Biochem. J. 1991;276(Pt 1):269-70.
  11. Hall B.G., Salipante S.J., Barlow M. Independent origins of subgroup Bl+B2 and subgroup B3 metallo-beta-lactamases. J. Mol. Evol. 2004;59:133-41.
  12. Knothe H., Shah P., Krcmery V., Antal M., Mitsuhashi S. Transferable resistance to in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983; 11:315-17.
  13. Сухорукова М.В., Эйдельштейн М.В., Скслеенова Е.Ю. и др. Антибиотикорезистентность нозокомиальных штаммов Enteroacteriaceae в стационарах России: результаты многоцентрового эпидемиологического исследования Марафон в 2011-2012 гг. Клиническая микробиология и антимикробная химиотерапия. 2014;16:254-65
  14. Hernandez J., Stedt J., Bonnedahl J., Molin Y., Drobni M., Calisto-Ulloa N., Gomez-Fuentes C., Astorga-Espana M.S., Gonzalez-Acuna D., Waldenström J., Blomqvist M., Olsen B. Human-associated extended-spectrum beta-lactamase in the Antarctic. Appl. Environ. Microbiol. 2012;78:2056-58.
  15. Watanabe M., Iyobe S., Inoue M., Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1991;35:147-51.
  16. Poirel L., Naas T., Nicolas D., Collet L., Bellais S., Cavallo J.D., Nordmann P. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 2000;44:891-97.
  17. Cardoso O., Leitao R., Figueiredo A., Sousa J.C., Duarte A., Peixe L.V. Metallo-beta-lactamase VIM-2 in clinical isolates of Pseudomonas aeruginosa from Portugal. Microb. Drug Resist. 2002;8:93-7.
  18. Walsh T.R., Toleman M.A., Poirel L., Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 2005;18:306-25.
  19. Johnson A.P., Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance. J. Med. Microbiol. 2013;62(Pt 4):499-513.
  20. Pasteran F., Mora M.M., Albornoz E., Faccone D., Franco R., Ortellado J., Melgarejo N., Gomez S., Riquelme I., Matheu J., Ramon-Pardo P., Corso A. Emergence of genetically unrelated NDM-1-producing Acinetobacter pittii strains in Paraguay. J. Antimicrob. Chemother. 2014;69:2575-78.
  21. Rozales F.P., Ribeiro V.B., Magagnin C.M., Pagano M., Lutz L., Falci D.R., Machado A., Barth A.L., Zavascki A.P. Emergence of NDM-1-producing Enterobacteriaceae in Porto Alegre, Brazil. Int. J. Infect. Dis. 2014;25:79-81.
  22. Yigit H., Queenan A.M., Anderson G.J., Domenech-Sanchez A.,Biddle J.W., Steward C.D., Alberti S., Bush K., Tenover F.C. Novel carbapenem -hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001;45:1151-61.
  23. Nordmann P., Cornaglia G. Carbapenemase-producing Enterobacteriaceae: a call for action! Clin. Microbiol. Infect. 2012;18:411-12.
  24. Endimiani A., Hujer K.M., Hujer A.M., Pulse M.E., Weiss W.J., Bonomo R.A. Evaluation of Ceftazidime and NXL104 in Two Murine Models of Infection Due to KPC-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2011;55:82-5.
  25. Poirel L., Potron A., Nordmann P. OXA-48-like carbapenemases: the phantom menace. J. Antimicrob. Chemother. 2012;67:1597-606.
  26. Edelstein M.V., Skleenova E.N., Shevchenko O.V., D'souza J.W., Tapalski D.V., Azizov I.S., Sukhorukova M.V., Pavlukov R.A., Kozlov R.S., Toleman M.A., Walsh T.R. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect. Dis. 2013;13:867-76.
  27. Nordmann P., Naas T., Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011;17:1791-98.
  28. Walsh F., Cooke N.M., Smith S.G., Moran G.P., Cooke F.J., Ivens A., Wain J., Rogers T.R. Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. Int. J. Antimicrob. Agents. 2010;35:593-98.
  29. Ageevets V.A., Partina I.V., Lisitsyna E.S., Ilina E.N., Lobzin Y.V., Shlyapnikov S.A., Sidorenko S.V. Emergence of carbapenemase-producing Gram-negative bacteria in Saint Petersburg, Russia. Int. J. Antimicrob. Agents. 2014;44:152-55.
  30. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 4.0, 2014. http://www.eucast.org. 2014.
  31. CLSI. Performance standard for antimicrobial susceptibility testing. Twenty-fourth Informational Supplement. CLSI document M100-S24. Wayne, PA: Clinical and Laboratory Standard Institute, 2014.
  32. Hrabak J., Studentova V., Walkova R., Zemlickova H., Jakubu V., Chudackova E., Gniadkowski M., Pfeifer Y., Perry J.D., Wilkinson K., Bergerova T. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2012;50:2441-43.
  33. Falagas M.E., Tansarli G.S., Karageorgopoulos D.E., Vardakas K.Z. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg. Infect. Dis. 2014;20:1170-75.
  34. Daikos G.L., Tsaousi S., Tzouvelekis L.S., Anyfantis I., Psichogiou M., Argyropoulou A., Stefanou I., Sypsa V., Miriagou V., Nepka M., Georgiadou S., Markogiannakis A., Goukos D., Skoutelis A. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob. Agents Chemother. 2014;58:2322-28.
  35. Tzouvelekis L.S., Markogiannakis A., Psichogiou M., Tassios P.T., Daikos G.L. Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: an Evolving Crisis of Global Dimensions. Clin. Microbiol. Rev. 2012; 25:682-707.
  36. Falagas M.E., Lourida P., Poulikakos P., Rafailidis P.I., Tansarli G.S. Antibiotic Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae: Systematic Evaluation of the Available Evidence. Antimicrob. Agents Chemother. 2014;58:654-63.
  37. De Pascale G., Montini L., Pennisi M., Bernini V., Maviglia R., Bello G., Spanu T., Tumbarello M., Antonelli M. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit. Care. 2014;18:R90.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2015

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах