Анализ столкновения осаждающихся твёрдых частиц со стенкой в вязкой жидкости

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Обоснование. При расчётах скоростей свободного осаждения твёрдых частиц в вязкой ньютоновской жидкости предполагается, что влиянием приближающегося днища сосуда можно пренебречь. Необходимость учёта этого фактора возрастает с приближением днища сосуда и с уменьшением геометрического размера частиц.

Цель — разработка методики расчёта скорости осаждения твёрдых частиц в ньютоновской жидкости с учётом приближающегося днища сосуда и определение границы его применимости.

Материалы и методы. Анализируется известная расчётная модель движения осаждающихся дисперсных твёрдых частиц при приближении к днищу сосуда. Показано, что известная модель расчёта скорости осаждения твёрдых частиц при вблизи днища сосуда нуждается в уточнении.

Результаты. Предложенная модификация расчётной модели определения скорости осаждения твёрдых частиц, учитывающая наличие днища сосуда, позволяет обеспечить физически более достоверные результаты. Даны разъяснения о влиянии броуновского движения молекул жидкости на движение осаждающихся твёрдых частиц.

Заключение. Практическая ценность исследования заключается в возможности расчёта скорости осаждения твёрдых частиц при приближении к днищу сосуда.

Полный текст

ВВЕДЕНИЕ

При исследовании осаждения твёрдых частиц в жидкой среде предполагается, что среда состоит из частиц дисперсной твёрдой фазы и вязкой ньютоновской жидкости. В отдельных работах анализируется процесс осаждения мелких частиц твёрдой фазы в жидкой фазе в нижней придонной части двухфазной смеси.

Так, в работе [1] анализировалась возможность столкновения осаждающихся мелких твёрдых тел в вязкой жидкости с нижней горизонтальной стенкой (дном сосуда). Автор работы [1] в примечании указывает, что этот раздел статьи о столкновении осаждающейся твёрдой частицы тела с днищем сосуда выполнен в соавторстве с Забабахиным Н.Е.

В статье [2] практически полностью воспроизведена суть работы со ссылкой на оригинальный теоретический и расчётный материал, ранее изложенный в [1]. В графической части статьи, как и в [1], твёрдая частица представлена как цилиндрическая частица с верхним горизонтальным днищем заданного радиуса и нижним сферическим, радиус которого не указан. Высота вертикальной цилиндрической части частицы не наименована и размер её также не указан.

В статье [2] дополнительно приведены результаты первых экспериментальных исследований, качественно подтверждающих теоретический вывод о невозможности в определённых условиях соударения выпуклых тел с ниже расположенной плоской стенкой сосуда. Однако никаких результатов сравнения поведения сферических частиц с расчётными оценками не приводится.

МЕТОД ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ

На рис. 1 показана принятая в работах [1, 2] форма частицы в виде цилиндра радиуса R с верхним плоским днищем и с выпуклым нижним днищем радиуса a, укажем дополнительно высоту цилиндрической части H. Частица приближается к плоскому днищу сосуда со скоростью υ.

 

Рис. 1. Конфигурация взаиморасположения осаждающейся твёрдой частицы и плоской поверхности днища сосуда.

Fig. 1. Configuration of collocation of a precipitating solid particle and a flat surface of a vessel head.

 

Ширина зазора между нижней поверхностью частицы и плоской стенкой h=Y+r2/(2R) со временем уменьшается. Таким образом, предполагается, что частица имеет форму цилиндра с плоской верхней и сферической нижней поверхностями. Предполагается также, что режим течения в кольцевом сечении между перемещающейся вниз частицей и плоской стенкой ламинарный. Распределение скорости υ по толщине зазора принимается параболическим, а при данном r средняя по высоте скорость uср=(2/3)umax, а градиент скорости у поверхности равен 4umax/h или 6uср/h.

Далее рассматривается элемент жидкого диска и действующие на него силы давления P и трения F, сумма которых должна быть равна нулю. В результате определяется распределение давления в окружающей жидкости. Далее с учётом давления жидкости на торцы выделенного цилиндрического элемента жидкости определяется суммарная замедляющая сила и записывается уравнение движения осаждающего тела [1, 2]:

Mdυdt=32πηυa4YY+a2/2R2. (1)

В уравнении (1) величина M обозначает эффективную массу тела, превосходящую его истинную массу на величину присоединённой массы жидкости. Эта масса прибавляется к массе тела, движущегося неравномерно в жидкой среде для учёта воздействия среды на это тело [3]. Величина присоединённой массы зависит от формы тела, направления движения и плотности среды.

Далее для упрощения конечных расчётных выражений полагается, что расстояние от нижнего, придонного контура частицы до неподвижного днища сосуда мало, что позволяет значительно упростить сформулированные расчётные выражения.

Поскольку dυdt=υdυdY, и, полагая, что Y(a2/2R), выражение (1) упрощаем, и оно принимает вид:

dυdY=6πηR2MY2. (2)

Интегрируя последнее выражение с граничным условием, что при Y=Y0, υ=υ0, получим

υυ0=6πηR2MlnYY0. (3)

Полагая, что частица остановилась υ=0, выражение (3) преобразуем в соотношение

Yk=Y0expMυ06πηR2. (4)

В работах [1, 2] приводится один и тот же пример расчёта: M=1 мг, R=0,05 см, Y0=1 мм, η=0,01 г/см· с при υ0=– 1 см/с. В обеих статьях расчёт по формуле (4) даёт значение Yk=0,012 см, т. е. частица не касается днища сосуда.

Кроме того, в работе [1] дополнительно приводится второй пример расчёта с отличающимися исходными данными: M=1 г, R=0,5 см, Y0=1 см, η=0,01 г/см·с при υ0= –1 см/с. Расчёт по формуле (4) даёт значение Yk=10–8 см, что много меньше ожидаемой шероховатости поверхности, т. е. частица практически касается днища сосуда [1].

В этих двух примерах, несмотря на значительное различие в массах частиц, в тысячу раз, начальная скорость υ0= –1 см/с принята одинаковой, что традиционно требует специального обоснования, которое отсутствует.

УТОЧНЕНИЕ МЕТОДИКИ РАСЧЁТА ПРИДОННОГО ОСАЖДЕНИЯ ЧАСТИЦ

Вместе с тем использование допущения Y(a2/2R) не является препятствием для проведения интегрирования уравнения (1). Проведя интегрирование дифференциального уравнения (1) в пределах от Y0 до Yk, получим выражение:

υυ0=6πηR2Mln1+a22RY+11+a2/(2RY)ln1+a22RYo11+a2/(2RY0) (5)

Полагая, что частица остановилась при υ=0, точнее близком к нулю, выражение (5) преобразуем в соотношение:

υ0=6πηR2Mln1+a22RY0+11+a2/(2RY0)ln1+a22RYk11+a2/(2RYk) (6)

В сравнении с предшествующим вариантом, рассмотренном в работах [1, 2] (см. выражение (4)), возникла зависимость от формы частицы, которая в [2] была принята в виде цилиндра радиуса a c выпуклым дном радиуса R, обращенным в сторону днища сосуда.

В табл. 1 представлены результаты расчётов, привёденных в работах [1, 2] и полученных в настоящей работе. Во всех расчётах динамическая вязкость воды равна η=0,01 г/см·с

 

Таблица 1. Сравнение расчётных характеристик осаждения твёрдых частиц вблизи горизонтального днища

Table 1. Comparison of calculated properties of solid particles precipitation near a horizontal vessel head

Обозначения, размерность

Источник

[1]

(6)

[1], [2]

(6)

M, г

1

1

0,001

0,001

R, см

0,5

0,5

0,05

0,05

υ0, см/с

-1

-1

-1

-1

Y0, см

1

1

0,1

0,1

Yk, см

10-8

5,4×10-11

0,01

1,177×10-3

υk, см/с

 

5,54×10-5

 

2,777×10-4

 

Сравнение результатов расчётов, выполненных в работах [1, 2], с расчётом с использованием соотношений, полученных в настоящей работе, показывает, что весьма значительно уточняется значение конечного расстояния Yk от вершины тела до неподвижной стенки. Кроме того, появилась возможность определить локальное значение скорости частиц в υk см/с в этих точках.

Отметим также, что расчётные значения величины Yk находятся на уровне микронов и менее, что соответствует шероховатости поверхности, достигаемой при её шлифовании [4], и представляются физически недостижимыми в реальных условиях заполненного жидкостью сосуда.

С использованием полученных результатов оценим приемлемость допущений, использованных в работах [1, 2], а именно условие

Y(a2/2R). (7)

В работах [1, 2] не содержится никакой информации о величине радиуса частицы . Поэтому при проведении расчётов в рамках используемой модели принималось, что радиусы цилиндрической части частицы и радиус её выпуклой донной части равны, т. е. a=R. В этом случае условие (7) преобразуется в соотношение

YR/2. (8)

Расчётные данные, проведённые в табл. 1, показывают, что условие (8) выполняется во всех случаях при расположении частиц вблизи нижней неподвижной поверхности. Условие (8) не выполняется в исходном состоянии с использованием соотношений приведённых в [1, 2].

Ранее выполненные исследования [5] показали, что в случае твёрдых частиц произвольной формы целесообразно использовать три характерных диаметра частицы: dv3=6a2(H+2a/3) — куб диаметра шара, эквивалентного объёму частицы; ds2=a(3a+2H) — квадрат диаметра шара, эквивалентного по площади боковой поверхности частицы; dm=2a — диаметр шара, эквивалентного по площади миделевому сечению частицы. В выражении для числа Рейнольдса используется эквивалентный диаметр частицы de=(2ds+dm)/3. С использованием таких представлений рассчитывались силы гидравлического сопротивления для твёрдых частиц, выполненных в виде двух сферических частиц, диске, иглоподобных эллипсоидах. Во всех случаях для двух различных ориентаций частиц относительно вертикального направления осаждения частиц получено удовлетворительное соответствие с результатами точных численных расчётов [5]. Этот подход был распространён и на осаждение полимодальных двухфазных смесей. В этом случае учитывалось также столкновение между частицами разных фракций твёрдой фазы. В дальнейшем такой подход использовался для расчёта движения полимодальных смесей твёрдых частиц в горизонтальных, вертикальных и наклонных трубопроводах [6]. При этом дополнительно учитывался процесс диффузии твёрдых частиц в вертикальном направлении.

Во всех случаях при исследовании осаждающихся твёрдых частиц и движении их в потоках жидкости необходима полная информация о фактической геометрической конфигурации твёрдых частиц. В работах [1, 2] фигурирует лишь один непосредственно геометрический параметр — радиус нижнего выпуклого днища твёрдой частицы R. Величина M определяет массу частицы, но без указания плотности вещества частицы, что не позволяет определить её объём и далее определить, скорее даже оценить, величины a и H. Поэтому, к сожалению, не представляется возможным корректно рассчитать начальное значение скорости υ0.

Скорость осаждения твёрдой частицы произвольной формы при использовании величины коэффициента гидравлического сопротивления по формуле Стокса для сферических частиц можно представить в виде зависимости [5]:

υ0=(ρsρ)gdv3de18ηdm2. (9)

Положим так же, как было принято в [1, 2], что при осаждении крупных части a=H=R=0,5 см, а в случае мелких частиц — a*=H*=R*=0,5 мм.

Используя выражение (9), определим отношение скоростей осаждения крупных частиц к скоростям осаждения мелких частиц.

υ01υ02=dv1dv23de1de2dm2dm12, (10)

где dv13=6a2(H+2a/3)=1,25 см3; dv23=6a*2(H*+2a*/3)=1,25 мм3; dm1=2a=1 см; ds1=[a(3a+2H)]1/2=1,118 см; de1=(2ds1+dm1)/3=1,0787 см; ds2=[a*(3a*+2H*)]1/2=1,118 мм; dm2=2a*=2×0,5=1 мм; de2=(2ds2+dm2)/3=1,0787 мм.

Подставляя приведённые численные значения в выражение (10), получим, что отношение υ01/υ02=100, т. е. скорости осаждения частиц значительно различаются, а не равны, как предполагается в работах [1, 2].

Применительно к сферическим осаждающимся частицам такой же вывод следует и из известной формулы Стокса для осаждающихся сферических частиц: υ0=(ρsρ)gd218η. В этом случае при различии диаметра частиц в 10 раз скорости осаждения также различаются в 100 раз.

При определении скорости свободного осаждения твёрдых частиц, как правило, не учитывается влиянием Броуновского движения на скорость свободного осаждения частиц. Как отмечается в [7], Броуновское движение оказывает важное влияние на двухфазные потоки, включающие мельчайшие твёрдые частицы. Если исходить из условия, что кинетическая энергия осаждающихся частиц много больше энергии теплового движения молекул, то условие, что Броуновским движением можно пренебречь, записывается в виде [5].

12πd36ρυ2>>32kT, (11)

где k=1,38×1023 Дж/К — постоянная Больцмана, T — температура в градусах Кельвина.

Характерное значение диаметра частиц, при котором необходимо учитывать влияние Броуновского движения на скорость осаждения твёрдых частиц, определяется выражением [5].

d5832kTν2πρsρ12g2ρs17. (12)

Расчёты величины правой части в формуле (10) при различных значениях плотности материала твёрдых частичек в воде при T=293°K представлены в табл. 2.

 

Таблица 2. Значения критического диаметра частиц твёрдой фазы

Table 2. Values of critical diameter of solid particles

ρ, кг/м3

1250

1500

2000

2500

3000

3500

4000

4500

d, мм

0,116

0,095

0,078

0,069

0,064

0,060

0,057

0,054

 

Из приведённых расчётных данных следует, что пренебречь влиянием Броуновского движения молекул несущей жидкости на движение осаждающихся твёрдых частиц можно лишь для частиц высокой плотности.

ЗАКЛЮЧЕНИЕ

Проведённый анализ показал, что использование в работах [1, 2] допущения, что Ya2/2R, является физически некорректным при анализе осаждения твёрдых частиц вблизи плоского днища. Показано, что возможно получение аналитического решения без привлечения указанного допущения, что позволяет более точно определить координаты частицы вблизи плоского днища.

ДОПОЛНИТЕЛЬНО

Вклад авторов. А.С. Кондратьев ― постановка задачи исследования, анализ публикаций по теме статьи, разработка обобщённой расчётной модели, анализ результатов расчётов, редактирование текста рукописи; П.П. Швыдько — библиографический поиск, проведение численных исследований, подготовка текста рукописи, создание изображений. Авторы подтверждают соответствие своего авторства международным критериям ICMJE (все авторы внесли существенный вклад в разработку концепции, проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией).

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

×

Об авторах

Александр Сергеевич Кондратьев

Московский политехнический университет

Автор, ответственный за переписку.
Email: ask41@mail.ru
ORCID iD: 0009-0001-2030-5165
SPIN-код: 6739-0496

д-р техн. наук, профессор кафедры «Промышленная теплоэнергетика»

Россия, Москва

Павел Петрович Швыдько

Системотехника

Email: Shvydko.P@gmail.com
ORCID iD: 0009-0007-8030-6403
SPIN-код: 8347-3886

руководитель проекта

Россия, Москва

Список литературы

  1. Забабахин Е.И. Некоторые случаи движения вязкой жидкости // Вопросы современной экспериментальной и теоретической физики. Л.: Наука, 1984. С. 58–68.
  2. Здещиц В.М., Сидоренко В.Д. Столкновение твердых тел в вязкой жидкости // Вiсник КТУ. 2010. № 26. С. 59–61.
  3. Седов Л.И. Плоские задачи гидродинамики и аэродинамики. М.: Наука, 1980.
  4. ГОСТ 9378-93. Образцы шероховатости поверхности (сравнения). Межгосударственный стандарт. Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 2002. [дата обращения: 17.05.2023] Режим доступа: https://meganorm.ru/Data2/1/4294847/4294847416.pdf
  5. Кондратьев А.С. Осаждение полимодальных твердых частиц в ньютоновских жидкостях. М.: Спутник+, 2014.
  6. Кондратьев А.С., Ньа Т.Л., Швыдько П.П. Методология и методы расчета движения дисперсных твердых частиц в трубопроводах. М.: Мос. Политех. 2020.
  7. Бэтчелор Дж. Влияние броуновского движения на среднее напряжение в суспензии сферических частиц // Гидродинамическое взаимодействие частиц в суспензиях. Механика. Новое в зарубежной науке. М.: Мир, 1980. Вып. 22. С. 124–153.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Конфигурация взаиморасположения осаждающейся твёрдой частицы и плоской поверхности днища сосуда.

Скачать (52KB)

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.