Эволюция аэродинамических характеристик автомобилей «КАМАЗ»
- Авторы: Валеев Д.Х1, Карабцев В.С1
-
Учреждения:
- ОАО «КАМАЗ»
- Выпуск: Том 8, № 1-1 (2014)
- Страницы: 13-19
- Раздел: Статьи
- URL: https://journals.eco-vector.com/2074-0530/article/view/67659
- DOI: https://doi.org/10.17816/2074-0530-67659
- ID: 67659
Цитировать
Полный текст
Аннотация
В статье отражены основные этапы работ, направленных на улучшение аэродинамических характеристик автомобилей КАМАЗ. Для каждого из этапов выделены применяемые методы исследований и сформулированы основные результаты. Показано, что применение современной вычислительной техники в сочетании с эффективным программным обеспечением позволяет выполнять оптимизацию аэродинамических характеристик грузовых автомобилей с меньшими материальными и временными ресурсами по сравнению с ранее применяемыми методами натурных испытаний и исследований масштабных моделей в аэродинамических трубах.
Полный текст
Внешняя аэродинамика находится в тесной связи с внутренней и оказывает влияние на показатели и характеристики автомобиля в целом и его отдельные системы. Среди таких параметров и систем следует указать: · топливная экономичность, особенно при сильном боковом ветре; · загрязняемость, накопление пыли, грязи и снега в застойных зонах; · уровни внешнего и внутреннего шума; · система питания двигателя воздухом; · системы вентиляции, отопления и поддержания микроклимата в кабине; · система охлаждения двигателя; · температурный режим тормозных механизмов, особенно в условиях горной местности и некоторые другие системы, от которых зависит производительность автомобиля, безопасность движения и комфорт водителя. Грузовой автомобиль представляет собой трехмерную конфигурацию и относится к классу плохообтекаемых тел в отличие от самолета или его элементов. Если вопросами улучшения аэродинамических характеристик легковых автомобилей, спортивных (гоночных) и автобусов разработчики начали заниматься еще в 20-е ... 30-е годы прошлого века, то исследованиями аэродинамики грузовых автомобилей всерьез занимаются только с конца 60-х годов. Следствием этого является: · поверхностное изучение механизма образования аэродинамического сопротивления и его составляющих; · недостаточное понимание физических процессов и явлений при возникновении отрывных и обратных течений, особенно при трехмерном отрыве; · отсутствие систематических исследований характеристик внутренних течений в моторном отсеке, колесных нишах и в кабине. В настоящее время существует множество методов исследования аэродинамических характеристик. Они подразделяются на качественные и количественные. Причем любой из них применим как к натурному образцу, так и к уменьшенной в определенном масштабе модели. Исследования могут выполняться в аэродинамической трубе или в процессе движения автомобиля в условиях естественной турбулентности приземного слоя атмосферы. В последние годы все большее применение в практике проектирования находят методы численных расчетов. Подробную информацию о применяемых методах и основных результатах исследований можно найти в работах [1] - [8]. Исследования трехмерных тел в аэродинамических трубах. В разное время были выполнены многочисленные исследования по оценке распределения давления и изучению структуры потока в аэродинамических трубах на простейших трехмерных геометрических телах - параллелепипедах. Рассмотрим некоторые результаты этих исследований с целью их практического применения в процессе разработки формы кабины перспективных автомобилей. В статье [9] приведены результаты исследований по оценке влияния радиуса закругления передних кромок, ступенчатой формы и установки различных накладок в передней части прямоугольного параллелепипеда на его коэффициент аэродинамического сопротивления CD и коэффициент распределения давления Ср. В работе [10] представлены результаты исследований по влиянию размеров и расположения экранирующей пластины, устанавливаемой перед фронтальной гранью прямоугольного параллелепипеда на коэффициент его аэродинамического сопротивления Сх и распределение коэффициента давления Ср. Исследования выполнены в аэродинамической трубе Т-1К Казанского авиационного института (современный КНИТУ - КАИ). Следует отметить, что коэффициент аэродинамического сопротивления в работах зарубежных исследователей обозначается CD, в работах отечественных - Сх. Из данных, приведенных на рисунке 1 (а - без экранирующей пластины; б - с экранирующей пластиной) видно, что установка экрана в форме пластины перед параллелепипедом приводит к уменьшению величины Сх с 0,82 до 0,33 (в 2,48 раза) и существенному перераспределению давления по его поверхности. Фронтальная поверхность параллелепипеда, находящаяся без экрана в зоне избыточного давления, при наличии экрана, оказывается в зоне разрежения и сопротивление системы «экран + тело» резко снижается. Рисунок 1. Рисунок 2. На основе полученных данных можно сделать следующие выводы. Минимум аэродинамического сопротивления ступенчатых трехмерных конфигураций реализуется при условии присоединения оторвавшегося с экранирующей пластины потока строго на переднюю грань параллелепипеда. Установка перед параллелепипедом экранирующей пластины, при оптимальном соотношении площадей пластины и передней грани параллелепипеда и при оптимальном расстоянии между ними, позволяет уменьшить аэродинамическое сопротивление системы «экран + тело» в 2,5 раза. Изучение обтекания масштабных моделей. На рисунке 2 приведены некоторые результаты исследований аэродинамических характеристик моделей масштаба 1:10 модернизированных автомобилей КАМАЗ-5425 в аэродинамической трубе Т-1К КНИТУ-КАИ. Показано, что применение обтекателей на крыше кабины позволяет уменьшить силу лобового сопротивления на 5...10%. Исследовано влияние внешних аэродинамических устройств на силу лобового сопротивления модели в зависимости от угла натекания потока. Из приведенных данных следует, что эффективность применения обтекателей при несимметричном натекании потока резко уменьшается. Поэтому при разработке подобных устройств должен учитываться и этот факт. Использование же объемного обтекателя на передней стенке фургона, находящейся в зоне избыточного давления, позволяет уменьшить силу лобового сопротивления на 12,5... 15,5%, в том числе и при несимметричном обтекании, что очень важно, поскольку в реальных условиях эксплуатации автомобиль практически всегда находится под воздействием естественных ветров и турбулентности воздушного бассейна. В процессе развития конструкций кабин автомобилей КАМАЗ выполнен большой объем конструкторских работ и дорожных испытаний с целью снижения аэродинамического сопротивления и расхода топлива различных моделей автомобилей. Во всем комплексе исследований можно выделить пять основных этапов. На первом этапе изучались аэродинамические характеристики автомобиля КАМАЗ-5320 (с тентом и без него). Исследования выполнялись в основном в дорожных условиях- визуализацией потока с помощью дымовых струй (рисунок 3), регистрацией расхода топлива, величин пути выбега, максимальной скорости и распределения давления по поверхности автомобиля с помощью датчиков давления. Перечисленные параметры измерялись на автомобиле, оборудованном аэродинамическими устройствами и без них. Затем результаты испытаний сравнивались. Рисунок 3. Рисунок 4. Было установлено, что применение в конструкции автомобиля простых в изготовлении аэродинамических устройств (рисунок 4) в виде плоского щита (1 и 2), спойлера(не показан) и козырька (5), позволяет улучшить топливную экономичность указанного автомобиля на 3,2...3,4% в режиме движения с постоянной скоростью в интервале от 50 до 80 км/ч. Также была отмечена необходимость направления оторвавшейся с верхней фронтальной кромки кабины струи строго на верхнюю кромку тента платформы при использовании различных обтекателей в качестве средства снижения аэродинамического сопротивления. Исследованиями установлено, что величина скорости обратного течения в зоне колесных ниш и дверей кабины модели автомобиля КАМАЗ-5320 достигает 1/3 от скорости набегающего потока. Рисунок 5. Рисунок 6. Второй этап посвящен исследованию аэродинамических характеристик модернизированных автомобилей КАМАЗ-53205 и КАМАЗ-53215 в дорожных условиях. Фрагмент визуализации потока на боковой поверхности кабины представлен на рисунке 5. В результате выполненных испытаний установлено отрицательное влияние аэродинамического (противосолнечного) козырька на расход топлива - он возрастает на 1,0...3,0% при его установке на автомобиль с тентом. Кроме этого, сделан вывод о недостаточной эффективности щитков, частично перекрывающих колесные ниши, накладки стойки ветрового стекла и высоких боковых обтекателей по уменьшению зоны забрызгиваемости. Исследованиями доказано, что для автомобилей, габаритная высота которых превышает 3.9 метра, для ощутимого в эксплуатации уменьшения расхода топлива целесообразна установка объемных и щитовых обтекателей больших размеров. В целом выполненные исследования показали, что эффективность испытанных конструкций аэродинамических устройств с точки зрения их практического применения в конструкциях автомобилей недостаточна. В процессе реализации третьего этапа выполнялись экспериментальные исследования автомобилей и автопоездов с кабинами, разработанными по дизайн-проекту совместно с фирмой «DAF». Внедрение мероприятий, предложенных фирмой, обеспечило уменьшение суммарной силы аэродинамического сопротивления на 5...7%, однако проблемы переноса частиц пыли и грязи вдоль боковых и задней поверхностей кабины воздушным потоком, направленным снизу вверх, остались. Результаты испытаний с использованием метода визуализации потока у боковой поверхности кабины, оборудованной аэродинамическим козырьком, верхним объемным обтекателем и боковыми обтекателями при скорости движения 80 км/час и наличии бокового ветра представлены на рисунке 6 (слева - подветренная сторона, справа - наветренная). Скорость ветра составляла 6... 10 км/час. На этом рисунке выделенными линиями со стрелками показано направление движения воздушных потоков (так называемые линии тока) в исследуемых зонах. Анализ представленной информации позволяет сделать следующие выводы: · на подветренной стороне боковой поверхности кабины существует мощный восходящий поток, который способствует переносу частиц грязи от колесной ниши вверх до уровня воздухозаборника; · на подветренной стороне в зоне передних крыльев и колесной ниши существует обратное течение, так как линии тока в этой зоне разворачиваются на 180°; · на наветренной стороне кабины поток прижат к поверхности кабины боковой составляющей скорости ветра, поэтому ярко выраженного восходящего потока не отмечается. Это утверждение касается только течения в пограничном слое, толщина которого определяется диаметром шелковинок; · во всех случаях отмечается наличие отрывной зоны (за стойкой и накладкой стойки лобового стекла), которая простирается вниз по направлению набегающего потока вплоть до опускного окна кабины. На четвертом этапе проводились испытания автомобилей, оборудованных рестайлинговыми кабинами. Методы испытаний - те же, что и на предыдущих этапах. Фрагмент качественной картины течения у поверхности кабины приведен на рисунке 7. Рисунок 7. Рисунок 8. В последние годы в связи с развитием средств вычислительной техники, инструментов для компьютерного проектирования и инженерного анализа все большее применение находят численные методы исследований аэродинамических характеристик. Эти методы исследований и лежат в основе пятого этапа. Краткий алгоритм выполнения расчетов включает следующие виды работ: · подготовка упрощенной 3D-модели в среде UnigraphicsNX; · создание домена для расчета аэродинамики; · импорт геометрии в расчетный комплекс STAR-CCM+; · построение объемной сетки для расчета; · задание начальных условий задачи, физических моделей и параметров решателя; · выполнение расчетов; · анализ полученных данных и их верификация на основе экспериментальных данных. Исходная 3D-модель автопоезда представлена на рисунке 8. Результаты расчета распределения давления в продольной плоскости автомобиля и полуприцепа, а также поле векторов скорости в этой плоскости приведены на рисунке 9. Рисунок 9. Анализ результатов расчетов позволяет установить зоны избыточного давления и разрежения, зоны отрыва потока на верхней кромке крыши кабины, застойные зоны за кабиной и полуприцепом, коэффициент аэродинамического сопротивления и т.д. Кроме того, были рассчитаны: · коэффициенты составляющих сил Су, Сz и моментов Мх, Му и Мz; · распределение коэффициента Ср в вертикальных и горизонтальных сечениях кабины; · изолинии коэффициента давления на поверхности; · линии тока вдоль боковых и верхней поверхностей кабины. Для верификации расчетной модели с помощью технологии быстрого прототипирования была изготовлена масштабная модель (1:20) автопоезда и выполнены экспериментальные исследования в аэродинамической трубе по определению коэффициента Сх. Выводы 1. На первых двух этапах снижение расхода топлива на автомобилях КАМАЗ за счет применения внешних аэродинамических устройств составило от 4 до 6 %. Для автомобилей КАМАЗ с низким тентом эффективна установка на крыше кабины простых в изготовлении щитовых (плоских) обтекателей и спойлеров. Для автомобилей с высоким тентом целесообразна установка на крыше кабины объемных обтекателей и спойлеров. Установка противосолнечных козырьков приводит к повышению давления в зоне воздухозаборника и, соответственно, уменьшению поступления пыли в систему питания двигателя воздухом. Использование испытанных конструкций аэродинамических противосолнечных козырьков на автомобилях с тентом и самосвалах приводит к увеличению расхода топлива на 1...3%. Оптимизацией геометрических характеристик козырька на автомобилях без тента можно получить экономию топлива до 1,5...2,5%. 2. В процессе реализации этапов три и четыре получено до 5-7 % экономии топлива. При этом существенно улучшен экстерьер автомобилей, уменьшены зоны самозабрызгиваемости, повышена эффективность систем охлаждения двигателя, отопления и вентиляции. Процесс доводки автомобилей методом натурных испытаний требует значительных материальных и временных ресурсов. 3. Реализация пятого этапа позволила разработать конструкции автомобилей на уровне лучших зарубежных аналогов. Причем основной объем работ по оптимизации выполнен с использованием методологии компьютерного моделирования. Применение суперкомпьютеров позволяет существенно сократить сроки разработки нового конкурентоспособного продукта. 4. Верификация расчетных моделей показала, что доводку внешних форм автомобиля и оптимизацию внутренних потоков можно выполнять на компьютерных моделях. 5. В этом случае при оптимизации формы кабины нет необходимости в изготовлении масштабной модели автомобиля для установки ее в рабочей части аэродинамической трубы или полнокомплектного опытного образца автомобиля при проведении испытаний в дорожных условиях.×
Об авторах
Д. Х Валеев
ОАО «КАМАЗ»
Email: pgk2@kamaz.org
к.т.н.; 8 (8552) 37-27-90
В. С Карабцев
ОАО «КАМАЗ»
Email: pgk2@kamaz.org
к.т.н.; 8 (8552) 37-27-90
Список литературы
- Бирман. Течения вблизи плохообтекаемых тел, применимые к аэродинамике автомашин // Труды общества инженеров-механиков США. Теоретические основы инженерных расчетов. - 1980. т. 102. № 3 - С. 85-96.
- Евграфов А.Н., Высоцкий М.С., Титович А.И. Аэродинамика магистральных автопоездов. - Мн.: Наука и техника, 1988. - 232 с.
- Евграфов А.Н., Высоцкий М.С. Аэродинамика колесного транспорта. - Мн.: НИРУП Белавтотракторостроение, 2001. - 368 с.
- Петрушов В.А. Автомобили и автопоезда: Новые технологии исследования сопротивлений качения и воздуха. - М.:ТОРУС ПРЕСС, 2008. - 352 с.: ил.
- Петрушов В.А. Оценка аэродинамических качестви сопротивлений качению автомобиля в дорожных условиях // Автомобильная промышленность. - 1985. № 11. - С. 14-20.
- Кюхеман Д. Аэродинамическое проектирование самолетов / Пер. с англ. Н.А. Благовещенский, Г.И. Майкапар; Под ред. Г.И. Майкапара. - М.: Машиностроение, 1983. - 656 с.
- Аэродинамика автомобиля / Под ред. В.Г. Гухо; пер. с нем. - М.: Машиностроение, 1987. - 424 с.
- Аэродинамика автомобиля: сб. статей / Пер. с англ. - М.: Машиностроение, 1984. - 376 с.
- TamasLojos. Drag reduction by the production of a separation bubble on the front of a bluff body // Journal of Wind Engineering and Industrial Aerodynamics. - Vol. 22 - 1986. - Р. 331-338.
- Ватолин А.К. Пути снижения лобового сопротивления большегрузных автомобилей на основе исследований моделей в аэродинамических трубах: Дис … канд. техн. наук: - Казань, 1983. - 178 с.
Дополнительные файлы
