Experimental models of chronic nephropathies


如何引用文章

全文:

详细

Experimental models are widely used to search mechanisms of kidney disease progression and highly selective target therapeutic strategies. In this review examine basic experimental models, used for glomerulopathy research - nephrotoxic nephritis, anti-Thy 1.1-nephritis, puromycin-amynonucleoside nephrosis, Haimann nephritits; for progressive renal failure: subtotal (5/6) nephrectomy: tubulointerstitial nephritis - are presented

作者简介

E Paltseva

参考

  1. Tisher C.C., Brenner B.M. Renal pathology, with clinical and functional correlations. 2nd ed. J.B. Lippincott company 1994;1:116-42.
  2. Jennette J.C., Olson J.L., Schwartz M.M., Silva F.G. Heptinstall's pathology of the kidney. 5th ed. Lappincott-Raven 1998;1:85-136.
  3. Schadde E., Kretzler M., Banas B., et al. Expression of chemokines and their receptors in nephrotoxic serum nephritis. Nephrol. Dial. Transplant. 2000;15:1046-53.
  4. Panzer U., Steinmetz O.M., Paust H-J., et al. Chemokine receptor CXCR3 mediates T cell recruitment and tissue injury in nephrotoxic nephritis in mice. J. Am. Soc. Nephrol. 2007;18:2071-84.
  5. Gharaee-Kermani M., Wiggins R., Wolber F. et al. Fibronectin is the major fibroblast chemoattractant in rabbit anti-glomerular basement membrane disease. Am. J. Pathol. 1996;148(3):961-67.
  6. Coimbra T., Wiggins R., Noh J.W., et al. Transforming growth factor-β production in anti-glomerular basement membrane disease in the rabbit. Am. J. Pathol. 1991;138(1):223-33.
  7. Jennette J.C., Olson J.L., Schwartz M.M., et al. Heptinstall's pathology of the kidney. 5th ed. Lappincott-Raven 1998;1:137-168.
  8. Minto A.W., Erwig L-P., Rees A.J. Heterogeneity of macrophade activation in anti-Thy-1.1 nephritis. Am. J. Pathol. 2003;163(5):2033-41.
  9. Westerhuis R., van Straaten S.C., van Dixhoorn M.G.A., et al. Distinctive roles of neutrophils and monocytes in anti-Thy-1 nephritis. Am. J. Pathol. 2000;156(1):303-10.
  10. Gaertner S.A., Janssen U., Ostendorf T., et al. Glomerular oxidative and antioxidative systems in experimental mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 2002;13:2930-37.
  11. Harendza S., Schneider A., Helmchen U., et al. Extracellular matrix deposition and cell proliferation in a model of chronic glomerulonephritis in the rat. Nephrol. Dial. Transplant. 1999;14:2873-79.
  12. Bertram J.F., Messina A., Ryan G.B. In vitro effects of puromycin aminonucleoside on the ultrastructure of rat glomerular podocytes. Cell Tissue Res. 1990;260:555-63.
  13. Samwal V., Pandya M., Bhaskaran M. et al. Puromycin aminonucleoside induces glomerular epithelial cell apoptosis. Exp. Mol. Pathol. 2001;70(1):54-64.
  14. Nakamura T., Ebihara I., Shirato I., et al. Modulation of basement membrane component gene expression in glomeruli of aminonucleoside nephrosis. Lab. Invest. 1991;64(5):640-47.
  15. Jennette J.C., Olson J.L., Schwartz M.M., et al. Heptinstall's pathology of the kidney. 5th ed. Lappincott-Raven 1998;1:187-258.
  16. Серов В.В., Пальцев М.А., Иванов А.А. Перспективы иммуноморфологичекого изучения гломерулонефрита // Архив патологий. 1988. № 9. С. 86-91.
  17. Karkar A.M., Smith J., Pusey C.D. <http://ndt.oupjournals.org/cgi/content/full/16/3/518?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&titleabstract=TNF+AND+glomerulo*&searchid=1047549705973_235&stored_search=&FIRSTINDEX=0&fdate=1/1/1990&journalcode=ndt>Prevention and treatment of experimental crescentic glomerulonephritis by blocking tumour necrosis factor α. Nephrol. Dial. Transplant. 2001;16:518-24.
  18. Tesch G.H., Lan H.Y., Atkins R.C., et al. Role of interleukin-1 in mesangial cell proliferation and matrix deposition in experimental mesangioproliferative nephritis. Am. J. Pathol. 1997;151(1):141-50.
  19. Kerjaschki D., Exner M., Ullrich R., et al. Pathogenic antibodies inhibit the binding of apolipoproteins to megalin/gp330 in passive Heymann nephritis. J. Clin. Invest. 1997;100(9):2303-09.
  20. Arai T., Morimoto K., Masaoka H., et al. Ultrastructural background of albuminuria in rats with passive Heymann nephritis. Nephrol. Dial. Transplant. 1997;12:2542-48.
  21. Cotran R.S., Kumar V., Collins T. Robbins pathologic basis of disease. 6th ed. W.B. Saunders company; 1999.
  22. Kerjaschki D., Neale T.J. Molecular mechanisms of glomerular injury in rat experimental membranous nephropathy (Heymann nephritis). J. Am. Soc. Nephrol. 1996;7:2518-26.
  23. Allegri L. Antigens in experimental models of membranous nephropathy: are they involved in human disease? Nephrol. Dial. Transplant. 1997;12:1801-04.
  24. Farquhar M.G., Salto A., Kerjaschki D., et al. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J. Am. Soc. Nephrol. 1995;6:35-47.
  25. Raats C.J.I., Luca M.E., Bakker M.A.H., et al. Reduction in glomerular heparin sulfate correlates with complement deposition and albuminuria in active Heymann nephritis. J. Am. Soc. Nephrol. 1999;10:1689-99.
  26. Zhou W., Andrews P.A., Wang Y., et al. Evidence for increased synthesis of complement C4 in the renal epithelium of rats with passive Heymann nephritis. J. Am. Soc Nephrol. 1997;8:214-22.
  27. Fujigaki Y., Watanabe T., Ikegaya N. et al. Immunoelectron microscopic study on type I, II and III TGF-β receptors on visceral glomerular epithelial cells in relation to glomerular basement membrane alterations in proteinuric rats. Nephrol. Dial. Transplant. 2000;15:191-99.
  28. McMillan J.I., Riordan J.W., Couser W.G., et al. Characterization of a glomerular epithelial cell metalloproteinase as matrix metalloproteinase-9 with enhanced expression in a model of membranous nephropathy. J. Clin. Invest. 1996;97(4):1094-101.
  29. Tisher C.C., Brenner B.M. Renal pathology with clinical and functional correlations. J.B. Lippincott company 1989;1:43-66.
  30. Schaefer L., Lorenz T., Daemmrich J., et al. Role of proteinases in renal hypertrophy and matrix accumulation. Nephrol. Dial. Transplant. 1995;10:801-07.
  31. Badid C., Vincent M., Mc Gregor B. MMF reduces myofibroblast infiltration and collagen III deposition in rat ramnant kidney. Kidney Int. 2000;1:33-47.
  32. Gong R., Rifai A., Tolbert E.M., et al. Hepatocyte growth factor ameliorates renal interstitial inflammation in rat remnant kidney by modulating tubular expression of macrophage chemoattractant protein-1 and RANTES. J. Am. Soc. Nephrol. 2004;15:2868-81.
  33. Kang D-H., Joly A.H., Oh S-W., et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondine-1. J. Am. Soc. Nephrol. 2001;12:1434-47.
  34. Kang D-H., Hughes J., Mazzali M., et al. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol. 2001;12:1448-57.
  35. Li P., Garcia G.E., Xia Y., et al. Blocking of monocyte chemoattractant protein-1 during tubulointerstitial nephritis resulted in delayed neutrophil clearance. Am. J. Pathol. 2005;167(3):637-49.
  36. Yabuki A., Maeda M., Matsumoto M., et al. SAMP1/Sku as a murine model for tubulointerstitial nephritis: a study using unilateral ureteral obstruction. Exp. Anim. 2005;54(1):53-60.
  37. Jr J.M.V., Mantovani E., Rodrigues L.T., et al. Simvastatin attenuates renal inflammation, tubular transdifferentiation and interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrol. Dial. Transplant. 2005;20:1582-91.
  38. Johns C., Gavras I., Handy D.E., et al. Models of Experimental Hypertension in Mice. Hypertension. 1996;28:1064-69.
  39. Griffin K.A., Picken M., Bidani A.K. Method of renal mass reduction is a critical modulator of subsequent hypertension and glimerular injury. J. Am. Soc. Nephrol. 1994;4:2023-31.
  40. Helle F., Vagnes O.B., Iversen B.M. Angiotensin II-induced calcium signaling in the afferent arteriole from rats with two-kidney, one-clip hypertension. Am. J. Physiol. Renal Physiol. 2006;291:F140-F147.
  41. Ingelfinger J.R., Dzau V.J. Molecular biology of renal injury: emphasis on the role of the rennin-angiotensin system. J. Am. Soc. Nephrol. 1991;2:S9-S20.
  42. Steinmetz O.M., Sadaghiani S., Panzer U., et al. Antihypertensive therapy induces compartment-specific chemokine expression and a Th1 immune response in the clipped kidney of Goldblatt hypertensive rats. Am. J. Physiol. Renal Physiol. 2007;292:F876-887.
  43. Haller H., Park J.-K., Dragun D., et al. Leukocyte infiltration and ICAM-1 expression in two-kidney one-clip hypertension. Nephrol. Dial. Transplant. 1997;12:899-903.
  44. Wiesel P., Mazzolai L., Nussberger J., et al. Two-kidney, one clip and one-kidney, one clip hypertension in mice. Hypertension. 1997;29:1025-30.
  45. Dobrian A., Wade S.S., Prewitt R.L. PDGF-A expression correlates with blood pressure and remodeling in 1K1C hypertensive rat arteries. Am. J. Physiol. Heart Circ. Physiol. 1999;276:2159-67.
  46. Florian J.A., Watts S.W. Epidermal growth factor: a potent vasoconstrictor in experimental hypertension. Am. J. Physiol. Heart Circ. Physiol. 1999;276:976-83.

补充文件

附件文件
动作
1. JATS XML