Experimental models of chronic nephropathies


Cite item

Full Text

Abstract

Experimental models are widely used to search mechanisms of kidney disease progression and highly selective target therapeutic strategies. In this review examine basic experimental models, used for glomerulopathy research - nephrotoxic nephritis, anti-Thy 1.1-nephritis, puromycin-amynonucleoside nephrosis, Haimann nephritits; for progressive renal failure: subtotal (5/6) nephrectomy: tubulointerstitial nephritis - are presented

About the authors

E M Paltseva

References

  1. Tisher C.C., Brenner B.M. Renal pathology, with clinical and functional correlations. 2nd ed. J.B. Lippincott company 1994;1:116-42.
  2. Jennette J.C., Olson J.L., Schwartz M.M., Silva F.G. Heptinstall's pathology of the kidney. 5th ed. Lappincott-Raven 1998;1:85-136.
  3. Schadde E., Kretzler M., Banas B., et al. Expression of chemokines and their receptors in nephrotoxic serum nephritis. Nephrol. Dial. Transplant. 2000;15:1046-53.
  4. Panzer U., Steinmetz O.M., Paust H-J., et al. Chemokine receptor CXCR3 mediates T cell recruitment and tissue injury in nephrotoxic nephritis in mice. J. Am. Soc. Nephrol. 2007;18:2071-84.
  5. Gharaee-Kermani M., Wiggins R., Wolber F. et al. Fibronectin is the major fibroblast chemoattractant in rabbit anti-glomerular basement membrane disease. Am. J. Pathol. 1996;148(3):961-67.
  6. Coimbra T., Wiggins R., Noh J.W., et al. Transforming growth factor-β production in anti-glomerular basement membrane disease in the rabbit. Am. J. Pathol. 1991;138(1):223-33.
  7. Jennette J.C., Olson J.L., Schwartz M.M., et al. Heptinstall's pathology of the kidney. 5th ed. Lappincott-Raven 1998;1:137-168.
  8. Minto A.W., Erwig L-P., Rees A.J. Heterogeneity of macrophade activation in anti-Thy-1.1 nephritis. Am. J. Pathol. 2003;163(5):2033-41.
  9. Westerhuis R., van Straaten S.C., van Dixhoorn M.G.A., et al. Distinctive roles of neutrophils and monocytes in anti-Thy-1 nephritis. Am. J. Pathol. 2000;156(1):303-10.
  10. Gaertner S.A., Janssen U., Ostendorf T., et al. Glomerular oxidative and antioxidative systems in experimental mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 2002;13:2930-37.
  11. Harendza S., Schneider A., Helmchen U., et al. Extracellular matrix deposition and cell proliferation in a model of chronic glomerulonephritis in the rat. Nephrol. Dial. Transplant. 1999;14:2873-79.
  12. Bertram J.F., Messina A., Ryan G.B. In vitro effects of puromycin aminonucleoside on the ultrastructure of rat glomerular podocytes. Cell Tissue Res. 1990;260:555-63.
  13. Samwal V., Pandya M., Bhaskaran M. et al. Puromycin aminonucleoside induces glomerular epithelial cell apoptosis. Exp. Mol. Pathol. 2001;70(1):54-64.
  14. Nakamura T., Ebihara I., Shirato I., et al. Modulation of basement membrane component gene expression in glomeruli of aminonucleoside nephrosis. Lab. Invest. 1991;64(5):640-47.
  15. Jennette J.C., Olson J.L., Schwartz M.M., et al. Heptinstall's pathology of the kidney. 5th ed. Lappincott-Raven 1998;1:187-258.
  16. Серов В.В., Пальцев М.А., Иванов А.А. Перспективы иммуноморфологичекого изучения гломерулонефрита // Архив патологий. 1988. № 9. С. 86-91.
  17. Karkar A.M., Smith J., Pusey C.D. <http://ndt.oupjournals.org/cgi/content/full/16/3/518?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&titleabstract=TNF+AND+glomerulo*&searchid=1047549705973_235&stored_search=&FIRSTINDEX=0&fdate=1/1/1990&journalcode=ndt>Prevention and treatment of experimental crescentic glomerulonephritis by blocking tumour necrosis factor α. Nephrol. Dial. Transplant. 2001;16:518-24.
  18. Tesch G.H., Lan H.Y., Atkins R.C., et al. Role of interleukin-1 in mesangial cell proliferation and matrix deposition in experimental mesangioproliferative nephritis. Am. J. Pathol. 1997;151(1):141-50.
  19. Kerjaschki D., Exner M., Ullrich R., et al. Pathogenic antibodies inhibit the binding of apolipoproteins to megalin/gp330 in passive Heymann nephritis. J. Clin. Invest. 1997;100(9):2303-09.
  20. Arai T., Morimoto K., Masaoka H., et al. Ultrastructural background of albuminuria in rats with passive Heymann nephritis. Nephrol. Dial. Transplant. 1997;12:2542-48.
  21. Cotran R.S., Kumar V., Collins T. Robbins pathologic basis of disease. 6th ed. W.B. Saunders company; 1999.
  22. Kerjaschki D., Neale T.J. Molecular mechanisms of glomerular injury in rat experimental membranous nephropathy (Heymann nephritis). J. Am. Soc. Nephrol. 1996;7:2518-26.
  23. Allegri L. Antigens in experimental models of membranous nephropathy: are they involved in human disease? Nephrol. Dial. Transplant. 1997;12:1801-04.
  24. Farquhar M.G., Salto A., Kerjaschki D., et al. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J. Am. Soc. Nephrol. 1995;6:35-47.
  25. Raats C.J.I., Luca M.E., Bakker M.A.H., et al. Reduction in glomerular heparin sulfate correlates with complement deposition and albuminuria in active Heymann nephritis. J. Am. Soc. Nephrol. 1999;10:1689-99.
  26. Zhou W., Andrews P.A., Wang Y., et al. Evidence for increased synthesis of complement C4 in the renal epithelium of rats with passive Heymann nephritis. J. Am. Soc Nephrol. 1997;8:214-22.
  27. Fujigaki Y., Watanabe T., Ikegaya N. et al. Immunoelectron microscopic study on type I, II and III TGF-β receptors on visceral glomerular epithelial cells in relation to glomerular basement membrane alterations in proteinuric rats. Nephrol. Dial. Transplant. 2000;15:191-99.
  28. McMillan J.I., Riordan J.W., Couser W.G., et al. Characterization of a glomerular epithelial cell metalloproteinase as matrix metalloproteinase-9 with enhanced expression in a model of membranous nephropathy. J. Clin. Invest. 1996;97(4):1094-101.
  29. Tisher C.C., Brenner B.M. Renal pathology with clinical and functional correlations. J.B. Lippincott company 1989;1:43-66.
  30. Schaefer L., Lorenz T., Daemmrich J., et al. Role of proteinases in renal hypertrophy and matrix accumulation. Nephrol. Dial. Transplant. 1995;10:801-07.
  31. Badid C., Vincent M., Mc Gregor B. MMF reduces myofibroblast infiltration and collagen III deposition in rat ramnant kidney. Kidney Int. 2000;1:33-47.
  32. Gong R., Rifai A., Tolbert E.M., et al. Hepatocyte growth factor ameliorates renal interstitial inflammation in rat remnant kidney by modulating tubular expression of macrophage chemoattractant protein-1 and RANTES. J. Am. Soc. Nephrol. 2004;15:2868-81.
  33. Kang D-H., Joly A.H., Oh S-W., et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondine-1. J. Am. Soc. Nephrol. 2001;12:1434-47.
  34. Kang D-H., Hughes J., Mazzali M., et al. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol. 2001;12:1448-57.
  35. Li P., Garcia G.E., Xia Y., et al. Blocking of monocyte chemoattractant protein-1 during tubulointerstitial nephritis resulted in delayed neutrophil clearance. Am. J. Pathol. 2005;167(3):637-49.
  36. Yabuki A., Maeda M., Matsumoto M., et al. SAMP1/Sku as a murine model for tubulointerstitial nephritis: a study using unilateral ureteral obstruction. Exp. Anim. 2005;54(1):53-60.
  37. Jr J.M.V., Mantovani E., Rodrigues L.T., et al. Simvastatin attenuates renal inflammation, tubular transdifferentiation and interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrol. Dial. Transplant. 2005;20:1582-91.
  38. Johns C., Gavras I., Handy D.E., et al. Models of Experimental Hypertension in Mice. Hypertension. 1996;28:1064-69.
  39. Griffin K.A., Picken M., Bidani A.K. Method of renal mass reduction is a critical modulator of subsequent hypertension and glimerular injury. J. Am. Soc. Nephrol. 1994;4:2023-31.
  40. Helle F., Vagnes O.B., Iversen B.M. Angiotensin II-induced calcium signaling in the afferent arteriole from rats with two-kidney, one-clip hypertension. Am. J. Physiol. Renal Physiol. 2006;291:F140-F147.
  41. Ingelfinger J.R., Dzau V.J. Molecular biology of renal injury: emphasis on the role of the rennin-angiotensin system. J. Am. Soc. Nephrol. 1991;2:S9-S20.
  42. Steinmetz O.M., Sadaghiani S., Panzer U., et al. Antihypertensive therapy induces compartment-specific chemokine expression and a Th1 immune response in the clipped kidney of Goldblatt hypertensive rats. Am. J. Physiol. Renal Physiol. 2007;292:F876-887.
  43. Haller H., Park J.-K., Dragun D., et al. Leukocyte infiltration and ICAM-1 expression in two-kidney one-clip hypertension. Nephrol. Dial. Transplant. 1997;12:899-903.
  44. Wiesel P., Mazzolai L., Nussberger J., et al. Two-kidney, one clip and one-kidney, one clip hypertension in mice. Hypertension. 1997;29:1025-30.
  45. Dobrian A., Wade S.S., Prewitt R.L. PDGF-A expression correlates with blood pressure and remodeling in 1K1C hypertensive rat arteries. Am. J. Physiol. Heart Circ. Physiol. 1999;276:2159-67.
  46. Florian J.A., Watts S.W. Epidermal growth factor: a potent vasoconstrictor in experimental hypertension. Am. J. Physiol. Heart Circ. Physiol. 1999;276:976-83.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies