Early markers of diabetic nephropathy


Cite item

Full Text

Abstract

Diabetic nephropathy (DN) plays one of the leading roles in the modern structure of the causes of chronic renal insufficiency. The article discusses the generally accepted and promising markers of diabetic kidney damage, including its early stages

References

  1. Дедов И.И., Викулова О.К., Сухарева О.Ю., Сунцов Ю.И. Скрининг диабетической нефропатии в Российской Федерации. В: Шестакова М.В., Дедов И.И. (ред.). Сахарный диабет и хроническая болезнь почек. М.: Медицинское информационное агентство. 2009. 39-59.
  2. Fioretto P., Caramori M.L., Mauer M. The kidneys in diabetes: dynamic pathways of injury and repair. The Camillo Golgi Lecture 2007. Diabetologia 2008; 51: 1051-1057.
  3. Бондарь И.А., Климонтов В.В. Функциональная морфология почек при сахарном диабете. В: Шестакова М.В., Дедов И.И. (ред.). Сахарный диабет и хроническая болезнь почек. М.: Медицинское информационное агентство. 2009. 149-176.
  4. Бондарь И.А., Климонтов В.В., Надеев А.П., Ким Л.Б. Экскреция гидроксипролина с мочой и локализация коллагенов III, IV и VI типа в клубочках почек у больных сахарным диабетом типа 1 с нефропатией. Пробл. эндокринол. 2005; 4: 6-10.
  5. Бондарь И.А., Климонтов В.В., Рогова И.П., Надеев А.П. Почки при сахарном диабете: патоморфология, патогенез, ранняя диагностика, лечение. Новосибирск: Изд-во НГТУ. 2008.
  6. Kobayashi T., Inoue T., Okada H. et al. Connective tissue growth factor mediates the profibrotic effects of transforming growth factor-beta produced by tubular epithelial cells in response to high glucose. Clin. Exp. Nephrol. 2005; 9: 114-121.
  7. Дедов И.И., Шестакова М.В. Сахарный диабет и артериальная гипертензия. М.: Медицинское информационное агентство, 2006.
  8. Fioretto P., Steffes M.W., Sutherland D.E. et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med. 1998; 339: 69-75.
  9. Fioretto P., Sutherland D.E., Najafian B., Mauer M. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int. 2006; 69: 907-912.
  10. Rossing P. The changing epidemiology of diabetic microangiopathy in type 1 diabetes. Diabetologia 2005; 48: 1439-1444.
  11. Viberti G.C., Wiseman M.J. The kidney in diabetes: significance of the early abnormalities. Clin. Endocrinol. Metab. 1986; 15: 753-782.
  12. Microalbuminuria Collaborative Study Group. Predictors of the development of microalbuminuria in patients with Type 1 diabetes mellitus: a seven-year prospective study. Diabet. Med. 1999; 16: 918-925.
  13. Rachmani R., Levi Z., Lidar M. et al. Considerations about the threshold value of microalbuminuria in patients with diabetes mellitus: lessons from an 8-year follow-up study of 599 patients. Diabetes Res. Clin. Pract. 2000; 49: 187-194.
  14. Stone M.L., Craig M.E., Chan A.K. et al. Natural history and risk factors for microalbuminuria in adolescents with type 1 diabetes: a longitudinal study. Diabetes Care 2006; 29: 2072-2077.
  15. Jerums G., Panagiotopoulos S., Maclsaac R.J. Diabetic nephropathy: epidemiology and clinical description. In: Boner G., Cooper M.E. (ed.). Management of Diabetic Nephropathy. London, N.-Y. 2003. P. 37-60.
  16. Svensson M., Sundkvist G., Arnqvist H.J. et al. Signs of nephropathy may occur early in young adults with diabetes despite modern diabetes management: results from the nationwide population-based Diabetes Incidence Study in Sweden (DISS). Diabetes Care. 2003; 26: 2903-2909.
  17. Raile K., Galler A., Hofer S. et al. Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care 2007; 30: 2523-2528.
  18. Marcovecchio M.L., Dalton R.N., Prevost A.T. et al. Prevalence of abnormal lipid profiles and the relationship with the development of microalbuminuria in adolescents with type 1 diabetes. Diabetes Care. 2009; 32: 658-663.
  19. Rossing P., Hougaard P., Parving H.H. Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care 2002; 25: 859-864.
  20. Grzegorz P., Krolewski A.S. Genetic determinants of diabetic nephropathy. In: Cortes P., Mogensen C.E. (eds). The diabetic kidney. Totowa, New Jersey: Humana Press. 2006. 329-350.
  21. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 4-е изд. Дедов И.И., Шестакова М.В. (ред.). М.: Медиа Сфера, 2009.
  22. Dalla Vestra M., Saller A., Bortoloso E. et al. Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab. 2000; 26 (Suppl. 4): 8-14.
  23. Бондарь И.А., Климонтов В.В., Надеев А.П., Бгатова Н.П. Начальные изменения в почках у больных сахарным диабетом 1-го типа. Пробл. эндокринол. 2007; 5: 3-8.
  24. Mogensen C.E., Christensen C.K. Predicting diabetic nephropathy in insulin-dependent patients. N. Engl. J. Med. 1984; 311: 389-393.
  25. Viberti G.C., Wiseman M.J. The kidney in diabetes: significance of the early abnormalities. Clin. Endocrinol. Metab. 1986; 15: 753-782.
  26. Caramori M.L., Fioretto P., Mauer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes. 2000; 49: 1399-1408.
  27. Perkins B.A., Ficociello L.H., Silva K.H. et al. Regression of microalbuminuria in type 1 diabetes. N. Engl. J. Med. 2003; 348: 2285-2293.
  28. Giorgino F., Laviola L., Cavallo Perin P. et al. Factors associated with progression to macroalbuminuria in microalbuminuric Type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia. 2004; 47: 1020-1028.
  29. Newman D.J., Mattock M.B., Dawnay A.B. et al. Systematic review on urine albumin testing for early detection of diabetic complications. Health Technol. Assess. 2005; 9: iii-vi, xiii-163.
  30. Vilarrasa N., Soler J., Montanya E. Regression of microalbuminuria in type 1 diabetic patients: results of a sequential intervention with improved metabolic control and ACE inhibitors. Acta Diabetol. 2005; 42: 87-94.
  31. Gerstein H.C. Reduction of cardiovascular events and microvascular complications in diabetes with ACE inhibitor treatment: HOPE and MICRO-HOPE. Diabetes Metab. Res. Rev. 2002; 18, Suppl. 3: S82-S85.
  32. Valmadrid C.T., Klein R., Moss S.E., Klein B.E. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch. Intern. Med. 2000; 160: 1093-1100.
  33. Casiglia E., Zanette G., Mazza A. et al. Cardiovascular mortality in non-insulin-dependent diabetes mellitus. A controlled study among 683 diabetics and 683 age- and sex-matched normal subjects. Eur. J. Epidemiol. 2000; 16: 677-684.
  34. Torffvit O., Lövestam-Adrian M., Agardh E., Agardh C. D. Nephropathy, but not retinopathy, is associated with the development of heart disease in Type 1 diabetes: a 12-year observation study of 462 patients. Diabet. Med. 2005; 22 (6): 723-729.
  35. Groop P.H., Thomas M.C., Moran J.L. et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009; 58: 1651-1658.
  36. Rachmani R., Levi Z., Lidar M. et al. Considerations about the threshold value of microalbuminuria in patients with diabetes mellitus: lessons from an 8-year follow-up study of 599 patients. Diabetes Res. Clin. Pract. 2000; 49: 187-194.
  37. Schultz C.J., Neil N.A., Dalton N.R. et al. Risk of nephropathy can be detected before the onset of microalbuminuria during the early years after the diagnosis of type 1 diabetes. Diabetes Care 2000; 23: 1811-1815.
  38. Мухин Н. А., Фомин В. В., Моисеев С. В. Микроальбуминурия - универсальный маркер неблагоприятного прогноза. Клин. мед. 2008; 11: 4-9.
  39. Kotajima N., Kimura T., Kanda T. et al. Type IV collagen as an early marker for diabetic nephropathy in non-insulin-dependent diabetes mellitus. J. Diabetes Complications 2000; 14: 13-17.
  40. Okonogi H., Nishimura M., Utsunomiya Y. et al. Urinary type IV collagen excretion reflects renal morphological alterations and type IV collagen expression in patients with type 2 diabetes mellitus. Clin. Nephrol. 2001; 55: 357-364.
  41. Tashiro K., Koyanagi I., Ohara I., et al. Levels of urinary matrix metalloproteinase-9 (MMP-9) and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal. 2004; 18: 206-210.
  42. Thrailkill K.M., Bunn R.C., Moreau C.S. et al. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care 2007; 30: 2321-2326.
  43. Ebihara I., Nakamura T., Shimada N., Koide H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am. J. Kidney Dis. 1998; 32: 544-550.
  44. Ishimura E., Nishizawa Y., Shoji S., Mori H. Serum type III, IV collagens and TIMP in patients with type II diabetes mellitus. Life Sci. 1996; 58: 1331-1337.
  45. Gambaro G., Cicerello E., Mastrosimone S. et al. High urinary excretion of glycosaminoglycans: a possible marker of glomerular involvement in diabetes. Metabolism. 1989; 38: 419-420.
  46. Juretić D., Krajnović V., Lukac-Bajalo J. Altered distribution of urinary glycosaminoglycans in diabetic subjects. Acta Diabetol. 2002; 39: 123-128.
  47. Korpinen E., Teppo A.M., Hukkanen L. et al. Urinary transforming growth factor-beta1 and alpha1-microglobulin in children and adolescents with type 1 diabetes. Diabetes Care 2000; 23: 664-668.
  48. Бондарь И.А., Климонтов В.В., Надeев А.П. Мочевая экскреция провоспалительных цитокинов и трансформирующего фактора роста β на ранних стадиях диабетической нефропатии. Тер. архив. 2008; 1: 52-56.
  49. Ohshiro Y., Ma R.C., Yasuda Y. et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes 2006; 55: 3112-3120.
  50. Chen S., Jim B., Ziyadeh F.N. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin. Nephrol. 2003; 23: 532-543.
  51. Matos J.P., de Lourdes Rodrigues M., Ismerim V.L. et al. Effects of dual blockade of the renin angiotensin system in hypertensive type 2 diabetic patients with nephropathy. Clin. Nephrol. 2005; 64: 180-189.
  52. Woo V., Ni L.S., Hak D. et al. Effects of losartan on urinary secretion of extracellular matrix and their modulators in type 2 diabetes mellitus patients with microalbuminuria. Clin. Invest. Med. 2006; 29: 365-372.
  53. Hellmich B., Schellner M., Schatz H., Pfeiffer A. Activation of transforming growth factor-beta1 in diabetic kidney disease. Metabolism 2000; 49: 353-359.
  54. Sharma K., Ziyadeh F.N., Alzahabi B. et al. Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes 1997; 46: 854-859.
  55. Riser B.L., Fornoni A., Karoor S. Connective tissue growth factor in the pathogenesis of diabetic nephropathy: a target for therapeutic intervention. In: Cortes P., Mogensen C.E. (eds). The diabetic kidney. Totowa, New Jersey: Humana Press. 2006. 175-186.
  56. Tam F.W., Riser B.L., Meeran K. et al. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy. Cytokine 2009; 47: 37-42.
  57. Nguyen T.Q., Tarnow L., Jorsal A. et al. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care 2008; 31: 1177-1182.
  58. Vasylyeva T.L., Ferry R.J.Jr. Novel roles of the IGF-IGFBP axis in etiopathophysiology of diabetic nephropathy. Diabetes Res. Clin. Pract. 2007; 76: 177-186.
  59. Cummings E.A., Sochett E.B., Dekker M.G. et al. Contribution of growth hormone and IGF-I to early diabetic nephropathy in type 1 diabetes. Diabetes 1998; 47: 1341-1346.
  60. Бондарь И.А., Климонтов В.В. Экскреция инсулиноподобного фактора роста 1 и фактора роста эндотелия сосудов с мочой у больных сахарным диабетом 1-го типа с нефропатией. Пробл. эндокринол. 2007; 6: 3-7.
  61. Boner G., Cooper M.E. Vascular endothelial growth factor-β as a determinant of diabetic nephropathy. In: Cortes P., Mogensen C.E. (eds). The diabetic kidney. Totowa, New Jersey: Humana Press. 2006. 187-200.
  62. Kim N.H., Kim K.B., Kim D.L. et al. Plasma and urinary vascular endothelial growth factor and diabetic nephropathy in Type 2 diabetes mellitus. Diabet. Med. 2004; 21: 545-551.
  63. Hohenstein B., Hausknecht B., Boehmer K. et al. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int. 2006; 69: 1654-1661.
  64. Fornoni A., Ijaz A., Tejada T., Lenz O. Role of inflammation in diabetic nephropathy. Curr. Diabetes Rev. 2008; 4: 10-17.
  65. Бондарь И.А., Климонтов В.В. Патогенез диабетической нефропатии. Иммуновоспалительные факторы. В: Шестакова М.В., Дедов И.И. (ред.). Сахарный диабет и хроническая болезнь почек. М.: Медицинское информационное агентство. 2009. 109-118.
  66. Wong C.K., Ho A.W., Tong P.C. et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin. Exp. Immunol. 2007; 149: 123-131.
  67. Goldberg R.B. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J. Clin. Endocrinol. Metab. 2009; 94: 3171-3182.
  68. Chow F., Ozols E., Nikolic-Paterson D. J. et al. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int. 2004; 65: 116-128.
  69. Yonemoto S., Machiguchi T., Nomura K. et al. Correlations of tissue macrophages and cytoskeletal protein expression with renal fibrosis in patients with diabetes mellitus. Clin. Exp. Nephrol. 2006; 10: 186-192.
  70. Ruster C., Wolf G. The role of chemokines and chemokine receptors in diabetic nephropathy. Front. Biosci. 2008; 13: 944-955.
  71. Banba N., Nakamura T., Matsumura M. et al. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int. 2000; 58: 684-690.
  72. Wang Q.Y., Chen F.Q. Clinical significance and different levels of urinary monocyte chemoattractant protein-1 in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2009; 83: 215-219.
  73. Mezzano S., Droguett A., Burgos M.E. et al. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int. Suppl. 2003; 86: S64-S70.
  74. Mezzano S., Aros C., Droguett A. et al. NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol. Dial. Transplant. 2004; 19: 2505-2512.
  75. Saito T., Urushihara M., Kotani Y. et al. Increased urinary angiotensinogen is precedent to increased urinary albumin in patients with type 1 diabetes. Am. J. Med. Sci. 2009; 338: 478-80.
  76. Pätäri A., Forsblom C., Havana M. et al. Nephrinuria in diabetic nephropathy of type 1 diabetes. Diabetes. 2003; 52: 2969-2974.
  77. Wang G., Lai F.M., Lai K.B. et al. Urinary messenger RNA expression of podocyte-associated molecules in patients with diabetic nephropathy treated by angiotensin-converting enzyme inhibitor and angiotensin receptor blocker. Eur. J. Endocrinol. 2008; 158: 317-322.
  78. Rossing K., Mischak H., Dakna M. et al. Urinary proteomics in diabetes and CKD. Am. Soc. Nephrol. 2008; 19: 1283-1290.
  79. Merchant M.L., Perkins B.A., Boratyn G.M. et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J. Am. Soc. Nephrol. 2009; 20: 2065-2074.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies